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Effect of Orthographic and Phonological Similarity  

on False Recognition of Drug Names 

Abstract 

 Health professionals and patients tend to confuse drugs with similar names, thereby 

threatening patient safety. One out of four medication errors voluntarily reported in the U.S. involves 

this type of drug name confusion. Cognitive psychology offers insight into how and why these errors 

occur. The objective of this investigation was to examine the effect of orthographic (i.e., spelling) 

and phonological (i.e., sound) similarity on the probability of making recognition memory errors 

(i.e., false recognitions). Prospective, computer-based, recognition memory experiments on 30 

pharmacists and 66 college students were conducted. Participants viewed a study list of drug names 

and then a test list. The test list was twice as long as the study list and contained distractor names at 

progressively increasing levels of similarity to the study words. The task was to identify which test 

names were on study list and which were new. The main outcome measure was probability of 

making a false recognition error (i.e., of saying a new name was on the study list). Among 

pharmacists and college students, there was a strong and significant effect of similarity on the 

probability of making a false recognition error. It was concluded that both orthographic (i.e., 

spelling) and phonological (i.e., sound) similarity increase the probability that experts and novices 

will make false recognition errors when trying to remember drug names. Similarity is easily and 

cheaply measured, and therefore, steps should be taken to monitor and reduce similarity as a means 

of reducing the likelihood of drug name confusions. 

Words in Abstract: 247 

Key words— drug names, medication errors, patient safety, pharmacists, recognition memory, 

similarity 



4 

INTRODUCTION 

 Drug therapy is the most common form of treatment offered by office-based physicians 

in the U.S., where nearly three billion prescriptions were dispensed in community pharmacies in 

1999 (Woodwell, 1999; Anonymous, 1999). In order to reap the benefits and avoid the hazards 

of drug therapy, however, the right  patient must receive the right drug in the right dose at the 

right time via the right route of administration. Too often, this does not occur (Cohen, 1999; 

Berwick and Leape, 1999; Lawrence, 1999; Allan and Barker, 1990; Kohn et al., 2000). As a 

case in point, patients sometimes receive the wrong drug because similarity in the spelling and/or 

pronunciation of drug names leads to errors in prescribing, dispensing, and administration (e.g., 

Xenical® and Xeloda®, cisplatin and carboplatin; amiodarone and amrinone; E-Vista® and 

Evista®; Celebrex®, Celexa®, and Cerebyx®; Dynacin® and DynaCirc®; Retrovir® and 

Ritonavir®) (Davis, 1997). These errors are typically made by health professionals, but patients 

are not immune, especially when drug companies engage in so-called brand extensions, 

marketing multiple different sets of active ingredients under very similar brand names (see, e.g., 

Tylenol Cold®, Tylenol Flu®, as well as multiple Chlor-Trimeton® products, Unisom® products, 

Mylanta® products, Maalox® products, Pepto-Bismol® products, Triaminic® products, etc.) (U. S. 

Pharmacopeia, 1996).  

 One out of four errors voluntarily reported in the U.S. identifies name confusion as the 

primary cause (U. S. Pharmacopeia, 1995; U. S. Pharmacopeia, 1993; U. S. Pharmacopeia, 1997; 

Davis, 1997). The lack of a mandatory reporting system makes it impossible to know the true 

rate of drug name confusions, but the enormous number of drugs being dispensed means that 

even an infinitesimally small error rate would cause a very high absolute number of errors. For 

example, if only 0.01% of the 3 billion prescriptions dispensed in 1999 involved a name 
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confusion, 300,000 errors would still result! Orthographic (i.e., spelling) and phonological (i.e., 

sound) similarity between drug names are, in the jargon of quality control, assignable or special 

sources of variation, sources that can be measured objectively, monitored, and minimized in an 

effort to increase the quality and safety of medical care (Berwick, 1991).  

 In a series of case-control studies, Lambert has shown that simple, automated measures 

of orthographic and phonological similarity are strongly associated with the commission of drug 

name confusion errors (Lambert, 1997; Lambert et al., 1997; Lambert et al., 1999). A measure of 

similarity based on the number of three-letter subsequences two names had in common was able 

to distinguish between cases (i.e., known errors) and closely matched controls with greater than 

94% accuracy (Lambert et al., 1999). These results confirmed an association between similarity 

and name confusions, but they were based on retrospective analysis of an error database that was 

vulnerable to selection biases (Lambert et al., 1999). Moreover, the case-control studies were not 

based on an explicit model of the cognitive processes that caused the errors. Prior studies also 

did not differentiate between types of name confusion errors. Some may have been memory 

errors (i.e., errors in recall or recognition); some may have been perceptual errors (i.e., mistaken 

visual or auditory perception); and some may have been motor control errors (i.e., erroneous 

selection of an adjacent product from a pull-down computer menu). We felt we could draw 

stronger conclusions about causality from prospective experimental studies of a narrower class of 

errors. In the investigation reported below, we carried out experiments to examine one type of 

name confusion error, those involving recognition memory for visually presented, typewritten 

drug names. We used both pharmacists and lay people (college students) as participants, because 

both are known to be vulnerable to this type of confusion. The experiments were based on an 
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explicit model of the cognitive processes that underlie recognition memory. We sought to answer 

two research questions. 

 
RQ1: How does similarity affect pharmacists’ recognition memory for visually presented 

drug names? 

RQ2: How does similarity affect college students’ recognition memory for visually 

presented drug names? 

THEORETICAL BACKGROUND 

 Drug name confusions can result, at a minimum, from errors in memory, perception, 

and/or motor control (Reason, 1990). Here we focused only on recognition memory errors. (A 

parallel study of recall errors will be published separately, and a series of experiments on visual 

perception is underway.) The real-world task we were modeling is that of a health professional or 

patient who sees a medication name on an advertisement,  package, printout, label, or computer 

screen, commits the name to memory, and then goes to retrieve the named medication from 

another location (e.g., a crash cart, shelf stock, drug store, etc.). When the professional or patient 

scans the shelf for the named medication, s/he is engaged in a recognition memory task, 

attempting to select the name from the shelf that matches the name stored in memory (Slack, 

1991). When a false recognition occurs (i.e., when a similar name is selected rather than the 

target name), a medication error results. Our goal is to increase the safety and reliability of the 

drug use process by identifying and eventually minimizing the factors that cause false 

recognition errors. 

Recognition Memory 

 The standard recognition memory task has two parts—study and test. During study, the 

subject is presented with a list of words to be remembered. During test, the subject is presented 
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with words from the study list mixed with new words (often called lures, foils or distractor 

words). The subject’s task is to identify which words were presented on the study list (i.e. ‘old’ 

words) and which were not (i.e., ‘new’ words). An established set of phenomena has emerged 

from the hundreds of recognition memory experiments that have been done over the years. 

Among these are the list length effect (i.e., longer study lists produce more errors), the list 

strength effect (i.e., more study produces fewer errors), the word frequency effect (i.e., rare 

words are easier to recognize than frequent words), and the similarity effect (i.e., foils that are 

orthographically, phonologically, or semantically associated with study words are recognized 

falsely more frequently than unrelated foils) (Anderson et al., 1998; Anderson and Lebiere, 1998; 

Underwood, 1970). The similarity effect was most relevant to the studies reported below. 

 The similarity effect was first observed when foils that were semantically associated to 

study words showed higher false recognition rates than unrelated controls (e.g., bottom was 

studied and top was falsely recognized) (Underwood, 1965), and it has since been repeatedly 

reproduced (Anisfeld and Knapp, 1968; Roediger and McDermott, 1995). The similarity effect 

has also been produced using foil words whose spelling and/or pronunciation were similar to 

study words (e.g.,  sour was studied and slur was falsely recognized, maid was studied and made 

was falsely recognized) (Nelson and Davis, 1972; Raser, 1972). This effect, which has clear 

implications for drug name confusion errors, has also been replicated many times (Wallace, 

1968; Wallace et al., 1995a; Wallace et al., 1995b; Wallace et al., 1998; Underwood and 

Zimmerman, 1973; Bencomo and Daniel, 1975; Sommers and Lewis, 1999).  

Theories and Models of Recognition Memory 

 In this section, we briefly summarize modern theories of recognition memory, focusing 

on explanations for false recognition errors. It is important to note, however, that memory 
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experiments using word lists are the most common experiments in psychology, and the relevant 

literature is vast, spanning more than 100 years (Anderson et al., 1998). Interested readers should 

consult standard texts for a review (Anderson, 1995). In the last 30 years, several models have 

been proposed to account for well-known patterns of learning, remembering, and forgetting. 

Although these models differ in their details, they share many assumptions and make many 

similar predictions (Raaijmakers and Shiffrin, 1992).  

 The ACT-R Model. Our analysis draws heavily on Anderson’s Atomic Components of 

Thought-Rational (ACT-R) model, a recently proposed integration of existing models that has 

been successful in accounting for a wide range of list memory phenomena (Anderson et al., 

1998; Anderson and Matessa, 1997; Anderson et al., 1996; Anderson and Lebiere, 1998; 

Anderson, 1999; Anderson and Bower, 1974). ACT-R is an explicit, mathematical model, 

implemented as a set of computer programs. Only a brief verbal description of the theory is 

presented here. ACT-R states that cognition is supported by a set of procedural rules operating 

on a declarative memory. Declarative memory consists of an associative network of nodes, and 

each node encodes a fact. Each node has a level of activation based on its prior history of 

activation and on its current receipt of activation from associated nodes. Nodes have weighted 

links to one another. The strength of these links is a function of the likelihood that two nodes 

have been simultaneously activated in the past. The probability that a given chunk of knowledge 

will be retrieved from memory is a function of its activation, with the most active nodes having 

the highest probability of being retrieved (Anderson and Lebiere, 1998).  

 The ACT-R model of recognition memory is based on a simple rule:  

IF the goal is to recognize if a word occurred in the list 

 and there is a trace of the word in the list 
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THEN accept it.(Anderson et al., 1998) 

During the recognition task, this rule operates on a declarative memory representation of the list 

and the list context. (The list context refers to an episodic representation of one specific list, as 

opposed to any other memory representation of a given word.) The test word is used to probe 

memory in search of a memory trace that matches it. Words are typically represented as vectors 

of orthographic, phonological, and semantic features (Shiffrin and Steyvers, 1997; Hintzman, 

1988). The level of activation of a word’s memory trace is a function of its feature-by-feature 

similarity to the probe word (Hintzman, 1988). When subjects see a test word, they probe their 

memory for a trace of that word in the specific list context. If the probe reveals an active trace of 

the word, the word is identified as old. If not, it is identified as new. False recognitions occur 

when a new word partially matches an old word (i.e., when many but not all of the features in the 

new word match the trace of an old word). Since there is random noise in the activation values of 

each memory trace, words that partially match a trace can sometimes exceed the threshold for a 

correct match (Anderson et al., 1998). This is the basic framework for our investigations. 

Similarity increases the probability of false recognition errors because it increases the probability 

of partial matching between new and old words in the recognition memory task (Anderson et al., 

1998; Anderson and Matessa, 1997; Anderson et al., 1996).  

 In this investigation we assumed that words were represented in memory as sets of 

orthographic and phonological features. We defined similarity in terms of the degree of overlap 

in these feature-sets, and then we examined the relationship between similarity and the 

probability of making a false recognition error. The project incorporated experiments to test the 

following hypotheses: 
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H1: False recognition errors will increase as orthographic similarity between target and 

foil names increases. 

H2: False recognition errors will increase as phonological similarity between target and 

foil names increases. 

EXPERIMENT 1:  

EFFECT OF ORTHOGRAPHIC SIMILARITY ON PHARMACISTS’ FALSE 

RECOGNITION OF VISUALLY PRESENTED DRUG NAMES 

Methods 

Design 

 This experiment was designed to examine the effect of orthographic similarity on 

pharmacists’ short term recognition of drug names, while holding a variety of other potentially 

confounding variables constant. Each participant viewed a 5-word study list and a 10-word test 

list. The task was to identify which words on the test list had appeared previously on the study 

list. The main variable of interest, orthographic similarity between study words and foils, was 

systematically varied. We expected recognition errors to be more likely as the similarity between 

study words and their corresponding foils increased. All of the experiments described below 

were approved in advance by the local institutional review board, and all participants orally 

consented to participate. 

Participants 

 Fifteen licensed, practicing pharmacists participated in Experiment 1. Participants were 

recruited from the clinical faculty and pharmacy resident staff of an academic medical center in 

the Midwest United States. All participants held the clinically-oriented, Pharm.D. degree. 

Individuals were not paid for their participation. 
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Stimulus Materials 

 Forty pairs of drug names were selected: 8 each at 5 progressively increasing levels of 

similarity (see Table 1). Orthographic similarity was measured by the bigram method with one 

space added to the beginning and ending of each word (Lambert, 1997; Stephen, 1994; Lambert 

et al., 1999). The first step in computing the bigram similarity between two words was to break 

the words into their two-letter subsequences. For example, the bigrams for the drug Atarax® were 

{_a, at, ta, ar, ra, ax, x_}. The bigrams for the drug Marax® were {_m, ma, ar, ra, ax, x_}. The 

Dice coefficient was then used to compute a similarity score between 0 and 1: 

OrthoSim = 2C/(B+A) 

where A was the number of bigrams in the first word, B was the number of bigrams in the second 

word, and C was the number of bigrams that occur in both words. Atarax and Marax shared 4 

bigrams {ar, ra, ax, x_}. Their bigram similarity score was (2*4)/(7 + 6) = 0.615.  

 Eight sets of 5 pairs, one pair at each level of similarity, were blocked by frequency to 

prevent frequency from confounding the effects of similarity in the memory (see Table 1). 

Names and prescribing frequencies were taken from the combined 1992-1994 National 

Ambulatory Medical Care Survey (NAMCS) databases (U. S. Department of Health and Human 

Services, 1996; Schappert, 1994; Woodwell and Schappert, 1995; Schappert, 1996). Both brand 

and generic names appeared in the NAMCS data, but our stimuli ended up including only 6 

generic names. The eight sets of name pairs permitted construction of 16 trials, with each word 

appearing in one trial as a target word and in one trial as a foil. 

-------------------------------- 
Insert Table 1 about here. 
------------------------------- 



12 

Procedures 

 Experiments were conducted using the SuperLab® experiment program for the Macintosh 

computer (Cedrus, 1991). The recognition task consisted of one practice trial and 16 

experimental trials. Each trial consisted of a study phase and a test phase. During the study 

phase, 5 names were displayed on the computer monitor at a rate of one name per second. After 

the fifth name was presented, a message appeared alerting the participants that the test phase was 

about to begin. During the test phase, ten names were presented. The ten names in the test set 

were comprised of 5 names from the study list and 5 new names which had not appeared on the 

study list. Words on the test list were presented in a random sequence. The task was to indicate, 

for each name on the test list, whether it had appeared on the study list or not. Participants 

indicated their decision by pressing one of two different keys on the computer keyboard. 

Participants took as much time as they needed to make the recognition judgment. Each 

participant produced 160 responses (i.e., 16 trials, 10 test words per trial), only 80 of which 

could have been false positive responses (i.e., only 80 responses were responses to foils). After 

the experiment was completed, participants were asked to rate the subjective familiarity of each 

name in the experiment on a seven-point, semantic differential scale that ranged from –3 (i.e., 

extremely unfamiliar) to +3 (i.e., extremely familiar). 

Analysis Plan 

 The dichotomous dependent variable in this experiment was false positive recognitions. 

Foil words correctly recognized as new (i.e., not from the study list) were scored as 0, and foil 

words falsely recognized as old (i.e., from the study list) were scored as 1. The independent 

variable was: (a) orthographic similarity, a continuous variable reflecting the bigram similarity 

for each target-foil pair. The control variables (i.e., those that were included to control nuisance 
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variation and to rule out alternative hypotheses) were (a) target frequency, a continuous variable 

reflecting the log (base 10) of the NAMCS prescribing frequency of the target word; (b) foil 

frequency, a continuous variable reflecting the log of the NAMCS prescribing frequency of the 

foil word; (c) target familiarity, an ordinal variable representing the subjective familiarity of the 

target name; (d) foil familiarity, an ordinal variable representing the subjective familiarity of the 

foil name; (e) lag, an ordinal variable representing the number of names intervening between 

presentation of target and foil; (f) trial, an ordinal variable representing the sequential position of 

a given response within the set of 160 responses; and (g) target, a dichotomous variable scored as 

1 if the current foil name had appeared on a previous list as a target and 0 otherwise.  

 Data were analyzed using MIXOR, a system for doing mixed effects, logistic regression 

modeling of dichotomous and ordinal data. The mixed-effects logistic regression model 

accommodates nesting of experimental conditions within subjects for a binary outcome and a 

mixture of  discrete and continuous covariates that can vary either at the level of the subject or 

the experimental condition (Hedeker and Gibbons, 1996; Hedeker and Gibbons, 1994; Hedeker, 

1999).  

 Our modeling strategy included multiple steps. The first step was to identify the correct 

scale for each independent and control variable. We did this by separately plotting the log odds 

of error as a function of each independent or control variable. If these plots were linear, terms 

were entered as simple linear terms. If the plot revealed an obvious nonlinearity, we selected a 

scale to fit the nonlinear form of the function (Hosmer and Lemeshow, 1989; Selvin, 1996). In 

this case, we primarily considered quadratic terms. Having identified the appropriate scale for 

each independent and control variable, we used Kleinbaum’s method of backward elimination to 

decide which variables to include in the final model (Kleinbaum, 1994). According to this 
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method, the analyst begins with a full model and then proceeds to eliminate as many terms as 

possible, using likelihood ratio tests (analogous to partial F-tests in ordinary least squares 

regression) to decide which terms contribute significantly to the model’s fit. Higher order terms 

(e.g., interaction terms, squared terms) are eliminated first, then first order terms. Interested 

readers should consult the text for a complete description of the approach (Kleinbaum, 1994).  

 The final step in our modeling strategy was to assess goodness-of-fit. Unlike the case of 

ordinary least squares regression, where R2 provides a widely agreed-upon measure of fit, in 

logistic regression, there is no consensus measure of goodness-of-fit (Pedhazur, 1997; Hosmer 

and Lemeshow, 1989; Kleinbaum, 1994; Selvin, 1996). Rather multiple measures are available. 

For each model, we report several different indices of goodness-of-fit: classification accuracy, 

Hosmer-Lemeshow’s C test based on deciles of risk, and fit between observed and predicted 

probabilities of error at selected levels of similarity.  

 To calculate classification accuracy, we imposed a threshold on predicted probability 

scores to generate classifications (e.g., if predicted probability > 0.5, then classify as error). 

Because we viewed sensitivity and specificity as equally important, we searched for the 

threshold that minimized the difference between sensitivity (the true positive rate) and specificity 

(the true negative rate). We reported sensitivity, specificity and overall accuracy at the selected 

threshold (Hosmer and Lemeshow, 1989).  

 For the Hosmer-Lemeshow test, we sorted observations into deciles of risk using their 

predicted probability of error as the sort key. We then compared the observed and expected 

number of errors and correct responses within each decile of risk (Hosmer and Lemeshow, 1989; 

Selvin, 1996). Hosmer & Lemeshow’s C is a chi-square statistic with 8 degrees of freedom 

(when deciles are used); the null hypothesis is that the data come from the same distribution (i.e. 



15 

that the model fits). Plots of predicted versus observed frequencies are provided for each 

experiment. All statistical tests used an alpha = 0.05 unless otherwise noted. 

 The third and final measure of fit graphically compared observed and predicted 

probabilities of error at selected levels of similarity (5 levels in experiments 1 and 3, 4 levels in 

experiments 2 and 4). To compute these probabilities, we evaluated the fitted model with all 

control variables set to their mean values and similarity set to the average value within a given 

level.  

Results 

 Descriptive statistics for the variables in Experiment 1 are given in Table 2. Figure 1 

provides a graphical display of the results. Overall, 87.16% of the foils were correctly recognized 

as ‘new’ (i.e., not from the study list), while 12.83% were incorrectly recognized as ‘old’ (i.e., 

from the study list). Following the backward elimination strategy, three logistic regression 

models were fitted to the data. The first included the intercept, control variables and independent 

variables, including squared terms for trial and similarity. The quadratic term for trial was 

eliminated from this model, based on an insignificant change in the likelihood ratio test 

comparing models with and without it (Kleinbaum, 1994). The quadratic similarity term was 

then eliminated in the same manner. The final model included all of the control variables plus 

similarity. We did not try to eliminate first order control variables, preferring instead to leave 

them in to control for confounding (Kleinbaum, 1994). Parameter estimates for the final model 

are given in Table 3. As predicted, false recognition errors increased as similarity increased (Beta 

= 2.73, p < 0.0001). In addition, the effect of trial was significant (Beta = -0.01, p < 0.01), with 

participants performing slightly better in later trials than in earlier trials. No other variables were 

significant in this model.  
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 The model had sensitivity of 66.8%, sensitivity of 67.1%, and overall accuracy of 67.1% 

when a predicted probability threshold of 0.118 was used for classification. The Hosmer-

Lemeshow test showed no evidence of lack of fit (X2(8) = 6.12, p = 0.4). Panel (a) of Figure 2 

shows a plot of predicted versus observed error frequencies at each decile of risk. The points 

follow the 45 degree diagonal from the origin, indicating a good fit. Figure 1 shows the fit 

between observed and predicted probabilities at 5 levels of similarity. 

--------------------------------------- 
Insert Tables 2 and 3 about here. 
--------------------------------------- 
---------------------------------------- 
Insert Figures 1 and 2 about here. 
---------------------------------------- 

Discussion of Experiment 1 

 The results of experiment 1 supported our first hypothesis. The log odds of making a 

false recognition error increased significantly as orthographic similarity increased. The more 

orthographic features shared by two words, the higher the likelihood that the foil word would 

partially match to the target during recognition. There was also a significant effect of trial on 

performance, with participants making fewer errors on later than on earlier trials. We attributed 

this improvement to the effects of practice, especially because participants were only given one 

practice trial to familiarize themselves with the task. Although the it tended to predict more 

errors than were observed (see Figure 1), a simple, 8-variable model provided a good fit to the 

observed data, suggesting that our measure of orthographic similarity was valid and that no 

important variables were missing from the model.  
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EXPERIMENT 2: 

EFFECT OF PHONOLOGICAL SIMILARITY ON PHARMACISTS’ FALSE 

RECOGNITION OF VISUALLY PRESENTED DRUG NAMES 

Methods 

Design 

 Experiment 2 was designed to parallel Experiment 1, the main difference being that 

similarity in this experiment was measured in terms of phonological rather than orthographic 

features.  

Participants 

 Fifteen licensed, practicing pharmacists participated in Experiment 2. This was a 

different group than the 15 who participated in Experiment 1, although they were recruited from 

the same academic medical center. All participants held the clinically-oriented, Pharm.D. degree. 

Individuals were not paid for their participation. 

Stimulus Materials 

 Stimulus materials consisted of 32 pairs of generic drug names, 8 each at 4 progressively 

increasing levels of similarity (see Table 4). To be included in this experiment, names had to be 

listed both in the NAMCS database and in the USP Dictionary of USAN and International Drug 

Names (U. S. Pharmacopeia, 1998) because prescribing frequency data were taken from the 

NAMCS database, and pronunciation guides were taken from the USP Dictionary.  

 An ad hoc measure of phonological similarity was developed specifically for this 

experiment. Several phonological features had been identified as important in previous research 

on similarity and memory (Drewnowski and Murdock, 1980). These included number of 
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syllables, location of stressed syllable, initial syllable, terminal syllable, and stressed vowel. 

Based on these features, similarity was defined as follows: 
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where A was the number of syllables in one word, B was the number of syllables in the other 

word, C was the number of common syllables, D was a binary feature representing a match 

between initial syllables, E was a binary feature representing a match between terminal syllables, 

F was a binary feature representing a match between accented syllables, G was a binary feature 

representing a match between accent positions, and H was a binary feature representing a match 

between number of syllables. This ad hoc measure gave half of the weight to the commonality in 

syllables and half of the weight to specific phonological features, with initial phoneme getting 

twice the weight as the other phonological features (Wallace et al., 1995a; Wallace et al., 1995b; 

Wallace et al., 1998).  

 To compute the phonological similarity between lincomycin and tobramycin, we began 

by retrieving the respective pronunciation guides from the USP Dictionary: (lin koe mye’ sin) 

and (toe bra mye’ sin). An apostrophe indicated the accented syllable. These names shared two 

syllables {mye’, sin}. They had different initial syllables (D = 0). They had the same accented 

syllable (E = 1) in the same accent position (F = 1). They had the same number of syllables (G = 

1) and the same terminal syllable (H = 1). Thus, the similarity between these two names was 

calculated as follows: 
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Sets of names at varying levels of similarity were again blocked by NAMCS prescribing 

frequency so that there would be no correlation between similarity and frequency (U. S. 

Department of Health and Human Services, 1996).  

--------------------------------- 
Insert Table 4 about here. 

--------------------------------- 

Procedures and Analysis Plan 

 The procedures were the same as those used in Experiment 1, except in this experiment, 

each study list was comprised of 8 words and each test list was comprised of 16 words. Each 

participant produced 128 responses (i.e., eight trials, 16 test words per trial), only 64 of which 

could have been false positive responses (i.e., only 64 responses were responses to foils). The 

analysis plan was essentially the same as in Experiment 1. 

Results 

 Descriptive statistics for the variables in Experiment 2 are given in Table 5. Figure 3 

displays the results graphically. Overall, 84.06% of the foils were correctly recognized as new 

(i.e., not from the study list), while 15.93% were falsely recognized as old (i.e., from the study 

list). Based on plots of log odds of error against each independent and control variable, quadratic 

terms for trial, target familiarity, foil familiarity, and similarity were evaluated in addition to the 

standard set of controls and similarity. All quadratic terms except similarity-squared were 

eliminated as the result of insignificant likelihood ratio tests. Comparison of models including all 

controls plus similarity and similarity-squared, controls plus similarity, and controls plus 

similarity-squared, were not statistically distinguishable, though each was significantly better 
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than a model that included only control variables. Thus, the simplest model, containing all first-

order control variables plus similarity, was chosen as the final model. Table 6 displays parameter 

estimates for the final model. Similarity had a significant effect on false recognitions (Beta = 

2.17, p < 0.05). False recognition errors were more likely to occur as similarity increased. Foil 

names presented on previous trials as targets were more likely to be falsely recognized than foil 

names not previously presented (Beta = 1.86, p < 0.0001). The effect of trial was significant 

(Beta = -0.01, p < 0.01), with participants performing slightly better in later trials than in earlier 

trials. No other variables were significant in this model. 

 The model had 62.1% sensitivity, 65.3% specificity, and 64.8% overall accuracy when a 

threshold of 0.114 was used for classification. The Hosmer-Lemeshow C test indicated that the 

fit was not optimal, (X2(8) = 29.56, p < 0.01). At mid and high deciles of risk, the model 

predicted too few errors. Panel (b) of Figure 2 shows a scatterplot of predicted versus observed 

error frequencies at the 10 deciles of risk.  

-------------------------------------- 
Insert Tables 5 and 6 about here 
-------------------------------------- 
-------------------------------------- 

Insert Figure 3 about here 
-------------------------------------- 

Discussion of Experiment 2 

 Results of experiment 2 supported our second hypothesis. Pharmacists’ false recognition 

errors increased as phonological similarity increased. These results suggested that our measure of 

phonological similarity, although somewhat ad hoc, was valid. The significance of the target 

variable indicated that participants often fell victim to source monitoring errors. That is, when a 

foil word had been presented on a previous trial as a target, participants incorrectly identified it 

as having been “old”. This was not an effect of similarity, but rather of confusion between the 
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current study list and previously presented study lists. (We are grateful to an anonymous 

reviewer for pointing out the possibility of such source-monitoring errors.) It is important to 

note, however, that the effect of similarity was still significant, even when the confounding 

effects of source monitoring errors were controlled. The significant effects of trial again showed 

that participants benefited from practice. Both the classification data and the Hosmer-Lemeshow 

test indicated a lack of fit between model and data. For example, we observed but could not 

explain an apparent dip in the error rate at the second level of similarity (see Figure 2). The lack 

of fit suggests either that our measure of similarity was flawed or that the underlying 

pronunciation guides were inappropriate. We speculate that this lack of fit was due to the 

somewhat informal and ad hoc nature of our measure of phonological similarity. Subsequent 

research should strive to improve the measurement of phonological similarity. 

EXPERIMENT 3:  

EFFECT OF ORTHOGRAPHIC SIMILARITY ON COLLEGE STUDENTS’ FALSE 

RECOGNITION OF VISUALLY PRESENTED DRUG NAMES 

Methods 

Design and Participants 

 Experiment 3 was designed to be identical to Experiment 1 except with respect to the 

sample. The sample for this experiment was larger and included no health professionals. 

Participants in Experiment 3 were 33 college students. The majority of students were 

undergraduate psychology majors who participated in exchange for course credit. Students who 

received course credit for participation were not eligible for payment. A small number of 

participants were recruited from the general student population. These students were each paid 
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$10 for their participation. Payment was primarily an incentive to get students to come to the 

medical campus, approximately two miles west of the main campus.  

Stimulus Materials, Procedures, and Analysis Plan 

 Stimulus materials were the same as those used in Experiment 1 (see Table 1). The 

experimental task and statistical analysis were also the same as in Experiment 1. 

Results 

 Since the same stimuli were used in both Experiments 1 and 3, descriptive statistics for 

similarity, trial, log frequency, and lag for both experiments can be found in Table 2. The mean 

familiarity of the names for the participants in Experiment 3 was -2.19 (SD = 1.61). In all, 

70.53% of the foils were correctly recognized as new (i.e., not from the study list), while 29.47% 

were incorrectly recognized as old (i.e., from the study list). A graph of the results is given in 

Figure 4. Table 7 displays parameter estimates for the logistic regression model. Increases in 

similarity (Beta = 2.38, p < 0.0001), trial (Beta = -0.01, p < 0.01), lag (Beta = 0.03, p = 0.01), 

target familiarity-squared (Beta = -0.04, p < 0.05), and trial-squared (Beta = 0.06, p < 0.05) were 

significantly associated with changes in the probability of false positive recognition errors. As 

predicted, when similarity between target and foil increased, so did the probability of false 

positive recognition errors. The effects of trial were complex and nonlinear. The larger the lag 

between presentation of target and foil, the more likely was a false positive error. As the square 

of target familiarity increased, the probability of a false recognition decreased. 

 The model had 64.2% sensitivity, 63.2% specificity, and 63.5% overall accuracy when a 

threshold of 0.28 was used for classification. The Hosmer-Lemeshow C test gave no evidence of 

lack of fit, (X2(8) = 7.24, p = 0.4). Panel (c) of Figure 2 shows a scatterplot of predicted versus 

observed error frequencies at the 10 deciles of risk, indicating a very good fit. 
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-------------------------------------- 
Insert Tables 7 and 8 about here 
-------------------------------------- 
-------------------------------------- 

Insert Figure 4 about here 
-------------------------------------- 

Discussion of Experiment 3 

 The results of experiment 3 supported our first hypothesis and, in large part, mirrored the 

results observed in experiment 1. For both pharmacists and college students, increased 

orthographic similarity was associated with a significant increase in the log odds of a false 

recognition. The results suggested that excessive similarity between drug names posed a risk not 

only to health professionals as they handled drugs, but also to patients, who may report taking 

the wrong drug when interviewed by health professionals or select the wrong over-the-counter 

drug in a retail setting. That is, similarity between non-prescription drug names, which are 

selected and administered by consumers themselves, may cause errors in self-care. The 

significant effect of lag on false recognitions was in all likelihood caused by the slow decay of 

memory traces over time, an effect that has been well-documented in the literature (Anderson et 

al., 1998). As time passed, memory traces for studied words slowly decayed, thereby increasing 

the chances of a partial match to a similar foil word. Trial and target familiarity had complex, 

nonlinear effects on the probability of a false recognition error. We offer no interpretation of 

these effects, except to note that they are nonzero and must be controlled in order to examine the 

main effect of similarity. As in experiment 1, the fit between model and data was good (see 

Figures 2 and 4). 
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EXPERIMENT 4:  

EFFECT OF PHONOLOGICAL SIMILARITY ON COLLEGE STUDENTS’ FALSE 

RECOGNITION OF VISUALLY PRESENTED DRUG NAMES 

Methods 

Design and Participants 

 This experiment was designed to replicate Experiment 2, using college students as 

participants rather than pharmacists. Thus, the design, stimulus materials, procedures, and 

analysis plan were the same as Experiment 2 (see Table 4). Participants in Experiment 4 were 33 

college students (not the same group from Experiment 3). Most were undergraduate psychology 

majors who participated in exchange for course credit. Several were recruited from the general 

student population. These students were each paid $10 for their participation.  

Results 

 Since the same stimuli were used in both Experiments 2 and 4, descriptive statistics for 

similarity, trial, log frequency, and lag for both experiments can be found in Table 5. The mean 

familiarity of the names for the participants in Experiment 4 was –1.81 (SD = 1.95). Overall, 

69.03% of the foils were correctly recognized as new, and 30.97% of the foils were incorrectly 

recognized as old. Figure 5 displays the results graphically. Based on bivariate plots, squared 

terms for trial, target frequency, foil frequency, lag, and similarity were evaluated along with the 

standard set of controls and independent variables. All squared terms except similarity-squared 

were excluded from the model based on insignificant likelihood ratio tests. Table 8 shows 

parameter estimates for the final logistic regression model. The regression of error probability on 

similarity was quadratic, with errors increasing over most of the range of similarity and 

decreasing at very high levels of similarity (see Table 8 for details). Lag (Beta = 0.04, p < 0.01) 
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was also significantly associated with increased probability of false positive errors. As the lag 

between target and foil increased, so did the likelihood of a false positive recognition error. Foil 

names that had appeared on previous trials as targets were more likely to be falsely recognized 

than names seen initially as foils (Beta = 0.52, p < 0.01). 

 The model had 58.9% sensitivity, 57.9% specificity, and 58.2% overall accuracy when a 

threshold of 0.29 was used for classification. The Hosmer-Lemeshow C test indicated that the fit 

was not optimal, (X2(8) = 18.69, p < 0.05). At low deciles of risk, the model predicted too few 

errors. Panel (d) of Figure 2 shows a scatterplot of predicted versus observed error frequencies at 

the 10 deciles of risk. 

--------------------------------------- 
Insert Table 8 about here 

--------------------------------------- 
-------------------------------------- 

Insert Figure 5 about here 
-------------------------------------- 

Discussion of Experiment 4 

 The results of Experiment 4 were partially supportive of hypothesis 2 and were generally 

consistent with what we observed in Experiments 1-3. The log odds of a false recognition was a 

quadratic function of phonological similarity between target and foil, increasing at low and 

medium levels of similarity, but decreasing at very high levels. We have refrained from offering 

a speculative explanation of this quadratic effect. As in experiment 3, longer lags were associated 

with higher false recognition probabilities. We interpreted these results as reflecting the effects 

of decaying memory traces (Anderson et al., 1998). As in experiment 2, participants were 

vulnerable to source monitoring errors, such that names that foil names that had previously been 

presented as targets were more likely to be falsely recognized than names that had not been 

previously presented. Participants clearly had some difficulty remembering whether a given 
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name had been on the current study list or a previously presented study list. As in experiment 2, 

there was evidence of lack of fit between model and data, especially where the observed error 

rate declined at the second level of similarity (see Figures 2 and 5), suggesting problems with the 

phonological similarity measure and/or the absence of important additional variables. 

GENERAL DISCUSSION 

 The benefits of modern, technologically intensive, medical care have come at a high price 

in terms of preventable harm to patients. Based on recent estimates, medical error is among the 

leading causes of death in developed countries (Berwick and Leape, 1999; Lawrence, 1999; 

Bates et al., 1995; Kohn et al., 2000). Although it may be tempting to blame individual doctors, 

nurses, or pharmacists for errors, an emerging consensus suggests that such a ‘culture of blame’ 

is a significant obstacle to the reduction of medical error. Instead, experts in error reduction and 

quality control emphasize a systems approach to the analysis and prevention of medical errors 

(Leape et al., 1995; Reason, 1990). This approach asserts that errors are primarily the result of 

poorly designed systems (e.g., poor lighting, poorly organized tasks, noise, distractions, similar 

names). The key to prevention, from a systems viewpoint, is to design systems in such a way that 

errors are either difficult or impossible to make. Systems theorists also emphasize the need for 

ongoing monitoring and analysis of system inputs and outputs as a means of identifying 

underlying weaknesses in system design (Leape et al., 1995).  

 Leape and colleagues identified failures in dose and identity checking as the second most 

common system failure in their analysis of 334 errors. Most of these errors were attributed to 

similarities in packaging and drug nomenclature (Leape et al., 1995). We agree that excessive 

similarity between drug names is a frequent proximal cause of medication errors, and we assert 

that the existence of so many similar pairs of names reflects systemic flaws in the way drug 
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names are evaluated and approved (Lambert et al., 1999). The drug name approval process is 

prone to error, in part because it involves multiple organizations who apply multiple conflicting 

criteria. The other notable weakness in current processes for name approval is the reliance on 

subjective judgments about similarity (Boring, 1997b; Boring, 1997a; Boring et al., 1996; Boring 

et al., 1998). Here and elsewhere, we have shown that similarity is an assignable source of 

variation in the drug name confusion error rate (Lambert, 1997; Lambert et al., 1999; Berwick, 

1991). Simple automated measures are available to make objective assessments of similarity 

between drug names (Stephen, 1994). The availability of such measures makes it difficult to 

justify ongoing reliance on subjective judgments as the basis for drug name approval decisions. 

These technologies should enable name approval agencies to ensure that new drug names are 

surrounded by a ‘zone of safety’ in the overall space of names. Preventing new names from 

violating the zone of safety of existing names should reduce the incidence of drug name 

confusion errors. 

 In this study, we have gone beyond retrospective analysis of case reports to offer an 

explicit model of the cognitive processes that lead to one type of memory error made by 

pharmacists and college students. In addition to illustrating that similarity is associated with 

errors, the psychological model explains why similarity causes memory errors. Our data were 

supportive of Anderson’s ACT-R model of recognition memory (Anderson and Lebiere, 1998). 

The ACT-R model asserts that similarity increases the probability of false recognition errors 

because it increases the probability of noisy partial matching between new and old words in the 

recognition memory task. Although it was focused narrowly on the problem of drug name 

confusions, our study also makes a contribution to the growing literature on false memories 

(Roediger and McDermott, 1995). We demonstrated that both experts (pharmacists) and novices 
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(college students) were vulnerable to false memory biases. Pharmacists’ made far fewer errors 

overall than their novice counterparts, a difference we attributed to familiarity with drug names. 

However, the positive effect of similarity on probability of false recognition was essentially 

unchanged by level of expertise. To our knowledge, this is the first investigation to examine the 

false memory phenomenon under different levels of expertise.  

Limitations  

 The studies reported above were limited in several respects. First of all, we examined 

only clinical pharmacists and college undergraduates. Generalization of the observed effects to 

non-pharmacist health professionals or to the lay population at large may not be warranted. One 

should even be cautious generalizing the results to the broader population of community 

pharmacists since our participants were all clinical pharmacists from an academic medical 

center. Second, because of sampling error in the original survey, some of the prescribing 

frequency data which we used lacked precision, especially estimates below 2 million 

prescriptions per year (i.e., log frequency less than 6) (Woodwell, 1999). Third, experiments 1 

and 3 included very few generic drug names. Thus, the effects we observed in those experiments 

can be generalized with greatest confidence only to other brand names. The recognition task we 

used was not a perfect model of what pharmacists and patients do. In reality, pharmacists and 

patients must select the correct drug from an array of simultaneously presented alternatives. In 

contrast, we asked participants to give and “old” or “new” response to each name individually. 

All stimulus presentations were visual, even though it is well-known that visual presentations 

activate phonological representations in memory (Marslen-Wislon, 1989). Future work should 

attempt to partial out the unique contributions to error of phonological and orthographic 

similarity. Finally, the absolute error rates reported above should not be over-interpreted. The 
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increasing probability of error as a function of similarity was most salient. The absolute rates 

were a function of similarity as well as stimulus durations, list lengths, and other extraneous 

characteristics of our specific experimental task. 

CONCLUSION 

 Excessive similarity between drug names significantly increases the likelihood of false 

recognition memory errors among practicing pharmacists and college students. In terms of 

cognitive psychology, errors result from a noisy partial match between orthographic and 

phonological features of the intended drug and its confusingly similar neighbor. From the point 

of view of industrial quality control, similarity is an assignable source of variation in the look-

alike/sound-alike medication error rate. As such, steps should be taken to minimize similarity 

between new drug names and existing drug names. Where confusion between previously 

approved names is likely to occur, any of a variety of error minimization strategies, including 

computerized order entry, use of bar codes, automated dispensing, and non-alphabetical storage 

of drug products, should be used (Schiff and Rucker, 1998; Bates et al., 1998; Cohen, 1999). 
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 Table 1. Stimulus materials for recognition memory task (orthographic similarity) (Experiments 1 and 3) 
 

Log 
Frequency 

Bigram 
Similarity 

Names 

5.94 0.78 Prolixin® Procolin®

5.94 0.47 Tenuate® Trilisate®

5.93 0.21 Zithromax® Capitrol®

5.93 0.13 Rogenic® Benylin®

5.93 0.00 Aclovate® Nicobid®

3.94 0.75 Aramine® Anamine®

3.92 0.47 Trantoin® Triacin®

3.91 0.21 Nephramine® Sinophen®

3.92 0.13 Dialose® Pinoval®

3.92 0.00 Paraflex® Otrivin®

4.86 0.74 Hydrocort® Hydrocet®

4.86 0.47 Antiminth® Timentin®

4.86 0.21 Minizide® Allergine®

4.86 0.13 Hexalol® Temaril®

4.86 0.00 Belexal® Marazide®

5.75 0.71 Urisep® Urised®

5.75 0.44 Exelderm® Eldepryl®

5.75 0.21 Dermatop® captopril 
5.75 0.13 Mylicon® Empirin®

5.75 0.00 Senokot® Efudex®

5.20 0.71 rifampin Rifadin®

5.20 0.44 Choledyl® Cholybar®

5.20 0.21 Trinsicon® Atabrine®

5.20 0.13 Genora® Desferal®

5.20 0.00 Claforan® Merital®

5.34 0.67 Pramasone® Orasone®

5.35 0.47 Drixoral® Fluoral®

5.35 0.21 Enduron® dantrolene 
5.35 0.13 Glucola® Talacen®

5.35 0.00 Rowasa® Ferralet®

6.58 0.67 Isordil® Isomil®

6.59 0.40 Indocin® doxepin 
6.56 0.21 Antivert® Ascriptin®

6.58 0.13 Zoladex® Relafen®

6.58 0.00 Lotensin® Nizoral®

5.12 0.67 Panadol® nadolol 
5.13 0.44 halothane Loxitane®

5.11 0.21 Theraplex® Hexadrol®

5.12 0.13 Estinyl® Vepesid®

5.12 0.00 Betalin® Rynatuss®

 

Note: Log frequency refers to the average frequency of the two words in a pair. 
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Table 2 

Descriptive statistics for Experiment 1  

Variable Minimum Maximum Mean SD 

False Pos. Error 0.00 1.00 0.13 0.33 

Similarity 0.00 0.78 0.30 0.25 

Trial 2.00 160.00 80.30 46.40 

Log Frequency 2.46 6.88 5.01 1.01 

Lag 1.00 14.00 7.30 3.43 

Familiarity -3.00 3.00 0.25 2.46 

 

Note: Log frequency and familiarity data are listed only once, even though, conceptually, the 

design refers to target frequency and foil frequency (or target familiarity and foil familiarity). 

Frequency and familiarity ratings of words were the same whether they were seen in a given trial 

as target or foil. This table also gives descriptive statistics for experiment 3, except for 

familiarity scores, which are given in the text for experiment 3. 
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Figure 1. Pharmacists’ recognition performance for orthographically similar names (Exp. 1). 

Freq. refers to the observed frequency of correct or incorrect responses. Light bars represent 

correct responses; dark bars represent errors. The trend lines illustrate the observed and predicted 

increases in the false positive error rate. Although similarity was a continuous variable in our 

analyses, we have divided it into 5 ranges for the purposes of creating these illustrations. Levels 

1 through 5 corresponded to mean bigram similarity values of 0.00, 0.13, 0.21, 0.45, and 0.71 

respectively. 
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Figure 2. Predicted versus observed frequency of false recognition errors at 10 deciles of risk: (a) 

experiment 1, (b) experiment 2, (c) experiment 3, (d) experiment 4. A perfect fit would be 

indicated by a scatter of points along the 45 degree diagonal from the origin. (See Hosmer and 

Lemeshow, 1989 for details on computing fit using deciles of risk.)
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Table 3 

Experiment 1: Parameter estimates for logistic regression model predicting false positive 

recognition errors 

Variable Estimate Stand. Error Z 

Intercept -1.70 2.49 -0.68 

Similarity 2.73 0.61 4.48** 

Trial -0.01 0.004 -2.50* 

Log Stim. Freq. -0.14 0.24 -0.58 

Log Foil Freq. -0.10 0.29 -0.34 

Lag 0.06 0.04 1.50 

Target 
Familiarity 

-0.08 0.07 -1.14 

Foil Familiarity -0.06 0.12 -0.50 

Target 0.61 0.35 1.74 

 

Note. Freq. = frequency. 

* p < 0.01, ** p < 0.0001 

-2 log likelihood = 809.06
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Table 4. Stimulus materials for phonological recognition task (phonological similarity) 

(Experiments 2 and 4) 

Log Frequency Similarity Names 

4.55 0.75 chloroform chloroquine 
4.76 0.42 glycerin tolmetin 
4.41 0.25 cisapride urea 
4.67 0.00 benzoin filgrastim 

5.84 0.71 acyclovir ganciclovir 
5.84 0.38 felodipine nifedipine 
5.91 0.17 isosorbide oxytocin 
5.81 0.00 aminophylline baclofen 

5.86 0.67 betamethasone dexamethasone 
5.55 0.43 mephobarbital metronidazole 
5.52 0.19 griseofulvin riboflavin 
5.72 0.00 cyclosporine nitrofurantoin 

4.98 0.67 tolazamide tolbutamide 
5.02 0.42 mannitol sorbitol 
5.00 0.17 melphalan propofol 
4.97 0.00 phenol probenecid 

5.83 0.58 atropine loxapine 
5.78 0.42 calamine phentermine 
5.80 0.17 captopril ipecac 
5.79 0.00 dapsone meprobamate 

4.97 0.58 digitalis digitoxin 
4.91 0.38 didanosine dienestrol 
4.93 0.17 glucagon ichthammol 
4.91 0.00 flutamide pentoxifylline 

6.25 0.50 amikacin bacitracin 
6.40 0.38 ceftazidime cephalexin 
6.31 0.21 methotrexate ofloxacin 
6.18 0.00 indomethacin nystatin 

5.19 0.58 cefaclor cephradine 
5.27 0.42 carbachol carmustine 
5.26 0.17 lactulose succimer 
5.23 0.00 estrone misoprostol 

 

Note: Log frequency refers to the average frequency of the two words in a pair. 
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Table 5 

Descriptive statistics for Experiment 2. 

Variable Minimum Maximum Mean SD 

False Pos. Error 0.00 1.00 0.16 0.37 

Similarity 0.00 0.75 0.30 0.24 

Trial 4.00 128.00 65.29 35.94 

Log Freq. 2.45 6.70 5.07 0.92 

Lag 1.00 23.00 12.80 5.31 

Familiarity -3.00 3.00 2.05 1.55 

 

Note: Freq. = frequency. Log frequency and familiarity data are listed only once, even though, 

conceptually, the design refers to target frequency and foil frequency (or target familiarity and 

foil familiarity). Frequency and familiarity ratings of words were the same whether they were 

seen in a given trial as target or foil. This table also gives descriptive statistics for experiment 4, 

except for familiarity scores, which are given in the text for experiment 4.



44 

0

50

100

150

200

250

1 2 3 4

Similarity Level

Freq.

0

0.2

0.4

0.6

0.8

1
Error Rate

Corrrect
Error
Observed
Predicted

 

Figure 3. Pharmacists’ recognition performance for phonologically similar names (Exp. 2). Freq. 

refers to the observed frequency of correct or incorrect responses. Light bars represent correct 

responses; dark bars represent errors. The trend lines illustrate the observed and predicted 

increases in the false positive error rate. Although similarity was a continuous variable in our 

analyses, we have divided it into 4 ranges for the purposes of creating these illustrations. Levels 

1 through 4 corresponded to mean bigram similarity values of 0.00, 0.19, 0.40, and 0.63 

respectively. 
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Table 6 

Experiment 2: Parameter estimates for logistic regression model predicting false positive 

recognition errors 

Variable Estimate Stand. Error Z 

Intercept -4.04 2.23 -1.81 

Similarity 2.17 0.97 2.23* 

Trial -0.01 0.01 -2.00** 

Log Target 
Freq. 

0.30 0.20 1.50 

Log Foil Freq. -0.22 0.21 -1.05 

Lag 0.05 0.03 1.67 

Target  
Familiarity 

0.03 0.14 0.21 

Foil Familiarity 0.01 0.19 0.05 

Target 1.86 0.42 4.43*** 

 

Note: Freq. = frequency. 

* p < 0.05, ** p < 0.01, *** p < 0.0001 

-2 log likelihood = 730.15 
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Figure 4. College students’ recognition performance for orthographically similar names (Exp. 3). 

Freq. refers to the observed frequency of correct or incorrect responses. Light bars represent 

correct responses; dark bars represent errors. The trend lines illustrate the observed and predicted 

increases in the false positive error rate. Although similarity was a continuous variable in our 

analyses, we have divided it into 5 ranges for the purposes of creating these illustrations. Levels 

1 through 5 corresponded to mean bigram similarity values of 0.00, 0.13, 0.21, 0.45, and 0.71 

respectively.



47 

Table 7 

Experiment 3: Parameter estimates for logistic regression model predicting false positive 

recognition errors 

Variable Estimate Stand. Error Z 

Intercept -0.95 0.49 -1.93 

Similarity 2.38 0.26 9.15*** 

Trial -0.01 0.004 -2.50** 

Log Target 
Freq. 

-0.02 0.05 -0.40 

Log Foil Freq. -0.05 0.07 -0.71 

Lag 0.03 0.01 3.00** 

Target  
Familiarity 

0.01 0.06 0.17 

Foil Familiarity 0.04 0.05 0.80 

Target 0.33 0.22 1.50 

Target  
Familiarity2

-0.04 0.02 -2.00* 

Trial2 0.06 0.03 2.00* 

 

Note: Freq. = frequency. Trial2 was divided by 1000 before being entered in the model. 

* p < 0.05, ** p < 0.01, *** p < 0.0001 

-2 log likelihood = 2932.33 
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Figure 5. College students’ recognition performance for phonologically similar names (Exp. 4). 

Freq. refers to the observed frequency of correct or incorrect responses. Light bars represent 

correct responses; dark bars represent errors. The trend lines illustrate the observed and 

predicted increases in the false positive error rate. Although similarity was a continuous variable 

in our analyses, we divided it into 4 ranges for the purposes of creating these illustrations. Levels 

1 through 4 corresponded to mean bigram similarity values of 0.00, 0.19, 0.40, and 0.63 

respectively. 
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Table 8 

Experiment 4: Parameter estimates for logistic regression model predicting false positive 

recognition errors 

Variable Estimate Stand. Error Z 

Intercept -1.81 0.68 -2.66** 

Similarity 1.73 0.23 7.46*** 

Similarity2 -2.88 1.21 -2.36* 

Trial -0.00 0.00 -0.3 

Log Target Freq. 0.01 0.06 0.13 

Log Foil Freq. 0.04 0.07 0.61 

Lag 0.04 0.01 2.65** 

Target 
Familiarity 

-0.02 0.04 -0.50 

Foil Familiarity -0.05 0.03 -1.40 

Target 0.52 0.17 3.05** 

 

Note: Freq. = frequency. 

* p < 0.05, ** p < 0.01, *** p < 0.0001 

-2 log likelihood = 2462.42 
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