Computerized Discourse Analysis of TIMMS-R Lesson Transcripts

Bruce Lambert, Ph.D., Clement Yu, Ph.D., David Lewis, Ph.D., Fang Liu, & Rodica Waivio

University of Illinois at Chicago
in association with LessonLab, Inc.
Overview

- TIMMS-R International Video Study
- Manual Content Analysis
- Computer-Assisted Content Analysis
 - Descriptive analyses
 - Comparative analyses
 - Clustering
 - Classification
TIMMS-R Video Study

- Project led by LessonLab, Inc. (www.lessonlab.com)
- Goal: to compare lesson form and content across cultures
- Replication, with 7 countries, of TIMMS study
- US, Hong Kong, Czech Republic, Australia, Switzerland, Japan, Netherlands
- Video tape of 100 math and 100 science lessons (eighth grade)
TIMMS-R Video Study

- Lessons transcribed and translated to English
- Lessons extensively coded via manual content analysis
- Detailed analysis of discourse form and structure done by computer-assisted means
Okay, it's a little bit different with the diameter, because we have to first of all work out what is the radius.

Lyle, what's the radius in this case?

I am the walrus.

Seven? Eight? Eight?

Good. Okay, our formula is Pye R squared. Shhh.

Can't you just do it with the perimeter?

No, you have to do it using just the radius. So the radius is eight.

Okay. Two examples.

Is it always going to be - is it always squared?
Computerized Text Analyses

- Phase 1: Word counts, concordances, sorting, global search and replacement
- Phase 2: Text similarity computation and document clustering
- Phase 3: Text categorization
Phase 1: Word counts, concordances, sorting, and search and replacement.

- Tools: GNU Emacs, GNU text utilities (sed, comm, sort, etc.), Gawk, Lisp

- Challenges
 - Translation issues
 - Transcription issues
 - Inaudible turns
 - Segmentation of transcript into turns
Phase 2: Text similarity computation and document clustering

- Tools: ThemeMachine document clustering system, plus refinements
- Steps:
 - Transform documents into vectors of term weights
 - Compute interdocument similarity via vector correlation
 - Hierarchical agglomerative clustering
Clustering Results

- Using verbatim text, lessons appear to cluster into distinct country- or culture-specific clusters.
- Using synonym replacement and similarity measures based on conceptual hierarchy, country-specific clustering appears less pronounced.
Clustering Challenges

- How much pre-processing?
 - Stop words?
 - Stemming?

- Which clustering parameters/methods?
 - Binary or IDF term weights?
 - Complete linkage or group-average clustering

- How to display clusters?
- Interpretation?
Phase 3: Text categorization

Tools: See5 classification program, custom-designed programs

Steps:
- Select target code
- Identify/create textual features
- Transform textual units into fixed, attribute-value vectors
- Train and evaluate classifier
Categorization Challenges

- Which codes to automate?
- What textual features should be used for classification?
- How accurate must automated coding be before it replaces human coding?
- How to integrate human and machine coding?
- How to interpret classification models?
Discussion and Implications

- Computer content analysis will enable a level of detailed description not previously possible.
- Text classification methods may be able to supplant manual coding in certain circumstances.
- Clustering may help to answer questions about the existence and nature of “cultural models” of classroom interaction.
Acknowledgments

- Jim Stigler, Ron Gallimore, Sam Mansukhani, Ken Mendoza, Helen Garnier, Genevieve Patthey-Chavez, Jennifer Jacobs, LessonLab, Inc.