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ABSTRACT 
Drug name confusions occur when drugs whose names look or sound alike (e.g., 
Celebrex/Cerebyx) are confused by clinicians and patients. Our project examines effects of 
frequency and similarity on auditory perception of drug names. Luce’s Neighborhood Activation 
Model is the theoretical framework. Frequency information was taken from national prescribing 
frequency databases. Spoken drug names were transcribed to ARPAbet. Similarity 
neighborhoods were calculated based on phoneme edit distance using phoneme-to-phoneme 
confusion probabilities as substitution costs. The confusability of each name was estimated using 
Luce’s frequency-weighted neighborhood probability rule (FWNPR). One hundred brand and 
one hundred generic drug names, stratified by frequency, were recorded. Low and high 
frequency sounds were filtered out to mimic telephone bandwidth. Names were used as stimuli 
in a perceptual identification experiment. Participants heard the drug names, at three different 
signal-to-noise ratios, against a background of 20-speaker babble. The task was to repeat back 
each name they heard. Participants were then shown  the 190 names and asked to pronounce 
them and rate their familiarity. Data have been collected from 66 pharmacists. These data are 
being scored. Additional data will be collected from 50 physicians, 50 nurses, and 50 lay people. 
Results will be used to refine the theory and to build screening tools for drug companies and 
regulators. 

1. INTRODUCTION 
The Institute of Medicine (IOM) reports that between 44,000 and 98,000 Americans die each 
year as the result of medical errors, making such errors the fourth leading cause of death in the 
U.S. [1]. Errors involving medication are the most common type [1, 2]. One in six reported 
errors in the U.S. involves drug names that look or sound alike (e.g., cisplatin/carboplatin, 
Retrovir/Ritonavir, Toradol/Tapazole) [3-8]. In outpatient pharmacies, the wrong drug error rate 
is estimated to be 0.13% [9]. With more than 3 billion prescriptions dispensed annually in the 
U.S., this translates to more than 3.9 million wrong drug errors per year. The IOM recommended 
that: “The Food and Drug Administration (FDA) should…require pharmaceutical companies to 
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test (using FDA-approved methods) proposed drug names to identify and remedy potential 
sound-alike and look-alike confusion with existing drug names” [1]. The federal Quality 
Interagency Coordination Task Force (QuIC) committed within one year to “develop additional 
standards for proprietary drug names to avoid name confusion” (p. 26) [10]. Thus, the 
development of methods for minimizing drug name confusions addresses a significant public 
health problem. This article describes our work on the development of a theoretical framework 
and experimental protocol that will help us predict and prevent auditory drug name confusions. 
In section 2, we describe the theoretical model. In section 3, we describe how we operationalized 
the key quantities from the model, and in section 4 we describe our experimental methods. Since 
this is still work in progress, we do not yet have results to present. Instead, we conclude with a 
discussion of future plans and challenges. 

2. BACKGROUND AND PROPOSED MODEL 
To explain auditory perceptual confusions, we use Luce’s Neighborhood Activation Model 
(NAM) [11]. NAM is an activation-competition model of auditory word perception [12, 13]. 
Figure 1 is a schematic description of NAM [11]. The metaphor underlying these models is that 
of spreading activation between networks of interconnected nodes. The nodes represent lexical 
(word) and sublexical (sub-word) units at various levels of abstraction. Nodes pass excitatory 
and inhibitory signals to one another over weighted connections. Each node has a level of 
activation that is a function of its resting activation as well as its excitatory and inhibitory inputs. 
Resting activation is itself a function of the frequency of occurrence of a given word or segment. 
 

  Higher Level Lexical Information  (Frequency) 

 
Figure 1: Flow chart for Luce’s neighborhood activation model. 

 
 Word recognition begins when speech sounds activate sublexical, acoustic-phonetic patterns 
in working memory. These sublexical patterns correspond to phonemes or clusters of phonemes 
that match the input. Nodes corresponding to activated acoustic-phonetic patterns send excitatory 
signals to word decision units that contain the given patterns. Since most acoustic-phonetic 
patterns will be contained in many different words, a whole cohort of similar words will be 
activated, including the target word and all of its ‘neighbors’ [14, 15]. The neighborhood is a set 
of words that share one or more sublexical features. At the word level, each node sends 
inhibitory signals to each other word node. This pattern of mutual inhibition at the word level 
creates a competition among word nodes. Input to the word decision units also includes 
information about the frequency of occurrence of competing word candidates. The input to each 
word decision unit is combined to produce a word decision value. This value reflects  the  degree    
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Activity Leve  

 
Figure 2: Diagram of  a Single Decision Unit 

 
of confidence in the hypothesis that a given word is in the input. When this value exceeds a 
threshold, recognition occurs. When stimulus information is incomplete or degraded by noise, it 
may be that no decision value exceeds the threshold. In this case, the decision value is interpreted 
as a probability. If a person is forced to identify a degraded word, the decision value, p(ID), 
reflects the probability that a given word will be identified. The hypothetical structure of a word 
decision unit is shown in Figure 2 [11].  
 The NAM is a processing instantiation of Luce’s frequency-weighted neighborhood 
probability rule (FWNPR), which is in turn based on R. D. Luce’s forced choice rule [11, 16]. 
The forced-choice rule predicts that the probability of identifying a stimulus S is equal to the 
probability of S divided by the sum of the probability of S and the probability of S’s neighbors: 
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In NAM, p(S) is analogous to the conditional probability of the stimulus word given itself (i.e., 
the probability that a person will identify Prozac® when presented with Prozac®): 
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where SWP stands for stimulus word probability and PSi is the ith of n phonemes in the stimulus 
word. SWP can also be thought of as the segmental intelligibility of S. P(Nj) from the forced 
choice rule becomes neighborhood word probability (NWP) in NAM: 
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stimulus word (i.e., the probability that a person will identify Prilosec® when presented with 
Prozac®), and PNi is the ith of n phonemes in the neighbor word. NWP can also be thought of as 
the segmental confusability of S and N. Each term in the rule is then weighted by frequency: 
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where nn is the number of neighbors and FreqNj is the frequency of the jth neighbor. Note, 
however, that SWP and NWP should not be interpreted literally as conditional probabilities. 
SWP and the sum of all NWPs will not necessarily sum to 1, as they must if they were truly 
conditional probabilities. Rather, SWP and NWP are meant to model activations in the cognitive 
system [11, 17]. P(ID) is the only true probability, and it is a function of SWP, NWP and word 
frequencies. 
 Thus, NAM states that auditory perceptual errors are a function of the intelligibility of 
stimulus words (SWP), the frequency of occurrence of stimulus words (Freqi) and the similarity 
(NWP) and frequency (Freqj) of neighboring words. The main hypothesis derived from NAM, 
and the central hypothesis to be tested in our experiments is that perceptual errors will increase 
as p(ID) decreases. Other things being equal, p(ID) will increase as the number, similarity, and 
frequency of neighbors decreases. There are, however, gaps between NAM-based work and the 
experiments we propose to do. First, the work on NAM has been done with one- and two-
syllable English words [11, 17, 18]. In contrast, the average trademark drug name in the U.S. has 
3 syllables and the average generic name has 4 syllables [19]. Second, SWP and NWP have been 
computed based on phonetic transcriptions of each stimulus word and empirically-gathered 
phoneme-to-phoneme confusion matrices, neither of which is currently available for drug names. 
Third, frequencies in NAM are based on the printed frequency of occurrence of various English 
words, but printed frequencies for drug names are neither available nor appropriate. Since we 
cannot follow the same procedures as Luce followed in computing p(ID), a major focus of our 
work has been to make the NAM applicable to drug name confusions by developing and testing 
alternative methods for estimating SWP, NWP and Freqi,j. 

3. OPERATIONALIZING KEY QUANTITIES FROM THE MODEL 
A. Phonemic Representation of Drug Names 
Previous work using NAM used ordinary monosyllabic English words. Standard phonemic 
transcriptions for these words were extracted from electronic dictionaries. Although there are 
some references which contain drug name pronunciation guides, they are either in non-standard 
formats [20] or were incomplete and unavailable to us in electronic form [21]. Therefore we 
recorded pronunciations of roughly 6000 brand and generic drug names from one practicing 
nurse and one practicing pharmacist. These recordings were then transcribed to ARPAbet [22] by 
an experienced phonetician. Subsequent analyses were based on these ARPAbet transcriptions. 

B. Confusion Matrices 
Computation of both SWP and NWP requires reference to some source of phoneme-to-phoneme 
confusion matrices. The confusion matrices describe, for any given pair of phonemes, what the 
probability of confusion is. Element i,j of the matrix gives the probability that one will hear 
phoneme i when presented with phoneme j. We recognize that the confusion matrices we used 
were not ideal for our purposes. They were based only on single-syllable consonant-vowel-
consonant words. The original confusion data were obtained at three different signal-to-noise 
ratios, where the noise was white noise. Confusion matrices (e.g., one at each signal to noise 
ratio, one for the beginning of syllables one for the end of syllables, etc.) were obtained from a 
separate project. We combined these into one composite matrix by taking the mean of all the 
component matrices.  

C.  Stimulus Word Probability (SWP) 
Using the confusion matrices, computation of SWP was a straightforward application of 
Equation (2).  
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D. Neighborhood Word Probability (NWP) 
Computing NWP was a two step process. Since a stimulus word and its neighbor may contain a 
different number of phonemes, the first step was to align the two phonemic strings. This was 
done using dynamic programming to compute the alignment between the two phoneme strings 
which minimized their phonological feature-based edit distance [23, 24]. Once the two words 
were optimally aligned, the phoneme-to-phoneme confusion probabilities were multiplied as 
shown in Equation (3). When one word was longer than another, it was necessary to have a 
confusion probability with the null phoneme. Luce’s matrices contained this information. These 
probabilities corresponded to the situation when a subject was presented with a phoneme but 
produced no response or when the subject was presented with a null stimulus and produced a 
phoneme in response.  
 We are currently experimenting with a more elegant method which uses dynamic 
programming to align the two phoneme strings so as to maximize the sum of phoneme-to-
phoneme log probabilities of confusion, rather than minimizing a sum of their edit distances.  
Since these phoneme-to-phoneme probabilities are given by the composite confusion matrix 
taken directly from Luce's tables, the antilog of the "distance" returned by this alignment 
function is precisely the required NWP, and no second stage of processing is required. 

E. Frequency 
Word frequency exerts powerful effects on word perception [11, 25, 26]. In psycholinguistics, 
frequency information is normally extracted from databases of printed word frequencies (or, in 
more recent times, from large electronic collections of text and speech) [27, 28]. Data on the 
printed frequency of drug names was both unavailable and not directly relevant. Instead, we used 
prescribing frequency data from several public and proprietary sources [29-32]. These data 
themselves are quite complex [33]. We used the average frequency from these 5 data sets to 
compute the frequency weights in equations (4). 

F. Frequency-Weighted Neighborhood Probability (FWNP) 
Using the methods described above, we computed FWNP for 5864 one-word drug names. The 
distribution of FWNP is given in Figure 3. Although Equation (4) indicates that FWNP should be 
based on all of the words in the lexicon, our pre-testing showed that using more than the 50 
closest neighboring words had little effect. The scores in Figure 3 are based on the 50 closest 
neighbors of each drug name, where similarity was based on phoneme edit distance. In this 
figure, the horizontal axis represents the estimated probability of correct identification (i.e., 
FWNP). This result shows what one would expect from a carefully engineered lexicon like the 
drug name lexicon, namely, that most names have high probabilities of correct identification, 
with relatively few near neighbors.  But the distribution is clearly bimodal. There are a 
disturbingly large number of names with very low FWNP scores. These names exist in dense, 
high frequency neighborhoods. Some of this may be due to the presence in the database of 
spelling variants of the same name (e.g., Rephresh and Refresh, Carrasyn and Carrisyn), but in 
other cases, we simply observe crowded, confusing neighborhoods (e.g., Vivox, Zyvox, Vioxx). 

4. EXPERIMENTS 
A. Overview of Experimental Design 
We designed an experiment to examine the effects of frequency-weighted similarity 
neighborhoods on auditory perceptual accuracy. We chose the perceptual identification task for 
three main reasons: (1) it has ecological validity–in the real world health professionals and lay 
people must correctly identify spoken drug names in noisy environments; (2) the main outcome 
measure in perceptual identification is a categorical, correct/incorrect score, rather than simply a 
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reaction time; and (3) performance on the perceptual identification task is known to be sensitive 
to differences in the frequency and similarity  neighborhood  characteristics  of  words.  The  first  

 
 

Figure 3: Distribution of FWNP scores for 5864 one-word drug names. 
 
consideration was to select a task that was a valid simulation of what health professionals and 
patients do. Physicians, pharmacists, nurses, and lay people must often identify spoken drug 
names in noisy environments (e.g., retail pharmacies, emergency rooms, operating rooms, busy 
inpatient wards) and/or through noisy, narrow-bandwidth communication channels (e.g., 
telephone). Hence, the noise-masked, bandwidth-limited perceptual identification task seemed a 
logical choice. 

B. Selection and Preparation of Stimulus Drug Names 
As stimuli for the main auditory perception experiment, we selected one hundred brand and one 
hundred generic drug names. Names were stratified by prescribing frequency by taking roughly 
ten of each type from each decile of prescribing frequency. The names were then digitally 
recorded in a professional recording studio. They were read by a woman who was a trained 
phonetician and also an experienced voice-over actor. Pronunciations were based on the 
phonemic transcriptions described in Section 3.A. Each recorded pronunciation was then edited 
into a separate AIFF audio file. Since our perceptual identification experiments were intended to 
mimic the bandwidth limitations of telephone audio, frequencies below 300Hz and above 
3000Hz were filtered out [34].   

C. Background Noise 
Drug names were played against a background of standard 20-speaker babble (obtained from 
Auditec of St. Louis). The noise was played at 65dB and was not bandwidth limited. The stimuli 
were played at either 63dB, 68dB, or 73dB, resulting in three signal-to-noise conditions of -2dB, 
+3dB, and +8dB respectively. 

D. Procedure 
Participants began by completing a demographic questionnaire. They then took a pure tone 
hearing threshold test. Participants whose hearing was below normal were excluded. Participants 
were then seated at a Macintosh PowerBook computer and fitted with a pair of headphones with 
an attached headset microphone (Beyerdynamic BT190). The participant then read the 
instructions. Playback of the 20-speaker babble was initiated, and this noise continued 
throughout the duration of the experiment. The PsyScope experiment program was used to run 
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the main experiment. The task began with 21 practice trials and then continued with 190 trials 
comprising the main experiment. Ten names from the original 200 were dropped to ensure the 
entire experiment took no more than one hour to complete. On each trial, the participant was 
asked simply to repeat back the name they think they heard. Spoken responses were captured 
through the headset microphone and digitally recorded on the computer. Reaction times (i.e., 
time between end of word playback and onset of response) were also captured by PsyScope. 
After completing the main experiment, participants moved to a different computer, put on a 
headset, and then pronounced the 190 experimental names as they were visually presented on the 
computer screen. After reading and pronouncing each name, participants rated their subjective 
familiarity with the name on a 7-point semantic differential scale. This final part of the task 
allowed us to capture pronunciation variation and subjective familiarity for later analysis. 

E. Scoring 
Recorded responses will be transcribed to ARPAbet. These transcriptions will then be compared 
to the ARPAbet transcriptions used to generate the recorded stimuli. We plan to employ both 
strict and lenient scoring criteria. The strict criterion will require complete, exact matching 
between response and reference transcriptions. Lenient criteria are still under development, but 
will be designed to capture legitimate pronunciation variation.  

5. DISCUSSION 
This paper has described work in progress. We have collected data from 66 pharmacists, and we 
plan to collect data from 50 physicians, 50 nurses, and 50 lay people in the coming year. Several 
significant challenges remain. Perhaps the most significant concerns how we will deal with 
pronunciation variation both in the computation of FWNP and in the scoring of responses. In 
addition, we have concerns about the validity and appropriateness of the confusion matrices we 
used to compute FWNP since the noise used to collect those matrices differed from the noise in 
our task. Similarly, we had to average across several disparate sources of frequency estimates to 
arrive at frequencies for each drug name. All of these concerns raise the possibility of 
measurement error, and at present we do not have good methods for quantifying its  magnitude. 
There are also concerns about the ecological validity of our task. Although many of the 
pharmacists said that the task resembled their everyday struggles to correctly identify drug 
names, they also said the task was quite difficult and the noise was somewhat different from the 
noise in their work environments. In spite of these concerns, we believe our work has made 
significant progress on the problem of drug name confusion both theoretically and 
methodologically, and we hope this progress will improve patient safety. 
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