(vs2)

Tcheng, D. K., Lambert, B. L., Lu, S., & Rendell, L. (1991). AIMS: An adaptive interactive modelling system for

supporting engineering decision-making. In L. Birnbaum and G. Collins (Eds.), Machine Learning: Proceedings of the eighth international

workshop (pp. 645-649). San Mateo, CA: Morgan Kaufmann.

AIMS: An Adaptive Interactive Modeling System
for Supporting Engineering Decision Making

David K. Tcheng
Computer Science Dept.
University of Illinois
at Urbana-Champaign

Bruce L. Lambert

University of Illinois
at Urbana-Champaign

Abstract

Engineering decision making is a two-phase
process involving model formation and model
utilization. Simulation models have been use-
ful for decision support but, can be too slow
for interactive applications. An integrated
methodology is presented for inducing faster
simulation models and using these models to
support interactive design. In AIMS, both
model formation and model utilization are
controlled by a multiple objective optimizer,
ISO. This knowledge processing framework is
applied to combustion engine design.

1 Introduction

At present, there exist simulators for many domains.
In engineering design, simulators are often mathemat-
ical models based on the physics of the process or
product being simulated. Such systems have impor-
tant advantages. They can accurately predict the per-
formance of potential designs without the expense of
building a prototype. However, they require many ex-
pert man-hours to construct. Also, they may func-
tion too slowly to support interactive decision making.
A more fundamental problem with simulators is that
they are built to “analyze” a given design. This is use-
ful during the verification of a final design. Early in
the design process, it would be more useful to have a
tool to help “synthesize” candidate designs based on
the design objectives.

The Adaptive Interactive Modeling System (AIMS) at-
tempts to provide a tool which (1) reduces the amount
of time required to construct simulation models by in-
ducing them from a database of real-world examples,
(2) increases the speed of existing simulators by us-
ing the original simulation model to generate examples
and inducing a faster simulation modél from these ex-
amples, and (3) uses the original or induced simulation
model to find Pareto-Optimal designs which tradeoff
the designers’ competing objectives.

This paper is developed in three main sections. First
the engineering design process is characterized as a

Speech Communication Dept.

Stephen C-Y. Lu

MIE and CS Dept.

University of Illinois
at Urbana-Champaign

Larry A. Rendell
Computer Science Dept.
University of Illinois
at Urbana-Champaign

multiple objective optimization problem. The sec-
ond section describes the AIMS knowledge process-
ing framework. Included is a discussion of the two
main components of AIMS, the induction toolbox and
the optimizer. Section three reports results of sev-
eral experiments that have been conducted in the area
of combustion engine design. The final section draws
conclusions and sets out goals for the future.

2 Design as Optimization

The design engineer’s task is best characterized as an
optimization problem. The designer’s goal is to search
a space of design parameters to find a point that max-
imizes some criteria. Take the internal combustion
engine, for example, as a target product for a given
design team. Here, the decision space might include:
stroke to bore ratio, ignition timing, fuel intake rate,

compression ratio, engine speed, number of cylinders,

and displacement. The objective space might consist
of: horse power, fuel efficiency, reliability, ease of as-
sembly, noise, weight, vibration, emission levels, and
cost. The problem is solved when the designer discov-
ers a point which best meets the competing objectives.

We want a decision support system that takes as input
the specification of a decision space and a set of user
objectives and outputs decisions that maximize the ob-
jectives. Two factors complicate this problem. First,
the function that maps design parameters to any one
objective may be complex, probabilistic, discontinu-
ous, many-peaked, etc. Elsewhere, we have argued
that such poorly behaved functions can be learned by
using an integrated approach to induction [Tcheng,
Lambert, & Lu, 1989; Tcheng, et al.,, 1989; Lu &
Tcheng, 1990]. Second, the presence of multiple objec-
tives complicates optimization. AIMS addresses both
of these difficulties.

In creating a system to support this kind of complex
decision making, the AT researcher must decide how to
approach the implied multiple objective optimization
problem. The literature on multiple objective decision
making is diverse (see [Buchanan, 1986; Chankong &
Haimes, 1983; Hwang, C. L., Paidy, S. R., Yoon, K. &
Masud, 1980; Hwang & Masud, 1979]), and we make

no attetupt at a systematic survey here. Instead, we
enumerate two of the most common approaches, briefly
touching on the advantages and disadvantages of each.

2.1 Using Single Objective Optimizers

Perhiaps the easiest way to deal with the complexity
introduced by multiple objectives is to weight each ob-
jective in proportion to its importance and collapse
them into a single super-objective function as in Equa-
tion (1): .

(1) Os= w101 + w202 + w303 + . . . + wnOn

where Os is the super-objective function, the wi’s are
weights, and the Oi’s are objective functions whose
domains are defined over the decision space. By re-
ducing the dimensionality of the problem to a single,
scalar-valued global criterion of optimality, the ana-
lyst can proceed to apply any of a variety of well un-
derstood single objective optimization methods (e.g.,
hill-climbing, genetic search, simulated annealing, re-
sponse surface fitting, etc.) to get a solution. This is a
powerful advantage that has led many Al researchers
to choose this approach to multiple objective decision
making.

However, Zadel [1963] has argued that early in the
decision making process people do not typically know
the trade-offs between objectives well enough to con-
struct a good a priori weighting for the super-objective
function. For instance, it might be the case that for an
insignificant increase in cost per engine, fuel efficiency
could be improved significantly. If cost of materials
is weighted too highly in proportion to fuel efficiency,
such a decision would never be returned by the op-
timizer. In short, the bias introduced by a certain
set of weights may effectively hide decisions that the
decision maker would have found most preferable if
the true relationship between the competing objectives
were known.

2.2 Using Multiple Objective Optimizers

Multiple objective optimizers avoid this weighting
problem by producing a set of Pareto optimal (i.e.,
Pareto optimal, efficient, non-inferior) solutions. This
set of solutions contains all optimal solutions with re-
spect to any weighting of the objectives. Rigorous
mathematical definitions of the Pareto optimal solu-
tion set are available in the literature. An intuitive
sketch of the concept is provided below.

For a given multiple objective problem, a decision is

Pareto optiinal if and only if there exists no other -

valid decision that improves one objective score with-
out degrading any other objective scores [Chankong &
Haimes, 1983]. Take combustion engine design for ex-
ample. For any Pareto optimal point, there may exist
a point with higher horsepower or a point- with higher
fuel efficiency, but there are no points with both higher
horsepower and higher fuel efficiency.

In this section, we have argued that a multiple objec-

tive design problems 1s best solved by using a multiple
objective optimizer instead of collapsing all objectives
into a single super-objective function. The next sec-
tion describes the AIMS architecture, our attempt to
combine an integrated approach to induction with op-
timization methods that deal with the full complexity
of multiple objectives.

3 The AIMS Architecture

The Adaptive Interactive Modeling System (AIMS) is
a prototype knowledge processing framework designed
to support engineering decision making in the realmn
of product and process design (see Figure 1). The
system has two main components: a toolbox of in-
duction algorithms and a multiple objective optimizer.
The induction toolbox (called CRL for the "compet-
itive relation learner”), the optimizer (called ISO for
the ”induce and select optimizer”), and the interaction
between the two systems have all been described and
empirically evaluated elsewhere [Lu & Tcheng, 1990;
Tcheng, Lambert, Lu, & Rendell, 1989; Tcheng, et
al.,1989]. Only a general overview is provided here.

Evaluator

ObJective
Score

O

CRL

Figure 1: The AIMS knowledge processing framework.

3.1 CRL: The Induction Toolbox

Many induction algorithms exist, each designed to
learn a particular kind of function. In both model
formation and model utilization, one may encounter
poorly behaved objective functions not easily learned
by conventional techniques. CRL was designed to fit
these poorly behaved functions. The basic algorithm
is a generalization of traditional recursive splitting
algorithms [Tcheng, Lambert, Ln, & Rendell, 1989;
Tcheng, et al., 1989; |. Such algorithins solve problems
by recursively splitting up input space and fitting each
region with an appropriate model. Traditional recur-
sive splitters (e.g., ID3 [Quinlan, 1986], PLS1 [Rendell,
1983]), and CART [Breiman, et al. 1984] use a sin-
gle decomposition (splitting) and one learning (fitting)
strategy for forming decision trees. CRL, in contrast,

manages the competition between multiple decompo-
sition strategies and multiple learning strategies, and
can produce models with hybrid representations. Cur-
rently implemented in CRL are several learning strate-
gies (mean, mode, exemplar, neural net, and regres-
sion) and several decomposition strategies (distance-
based, population-based, and arbitrary hyperplane).

With such a large space of alternatives, selecting the
best inductive bias is time consuming. Therefore, it is
desirable to have a method for inductive bias selection
in large bias spaces. Our solution has been to param-
eterize CRL’s bias space and use multiple objective
optimization techniques to search it. The next section
describes ISO, the optimizer used to accomplish this
task.

3.2 ISO: A Multiple Objective Optimizer

Optimization is a process of selecting the best deci-
sions from a pre-defined space of alternatives. Input
to a multiple objective optimizer is a decision space
and a set of objective functions. The output of the
optimizer is a set of Pareto optimal decisions. Opti-
mization in ISO is an iterative process involving three
steps: selection, evaluation, and induction (see Fig-
ure 1). The process begins with the random selec-
tion of the first decision (D). The decision is evalu-
ated by applying the objective functions to candidate
decision. The decision is associated with its objec-
tive scores (O) and the resulting input/output pair is
added to the database of examples available to the
inducer. The inducer, CRL, takes these examples as
input and outputs a model mapping decisions to objec-
tives. In subsequent iterations, selection is influenced
by two competing considerations: novelty and perfor-
mance. Novelty biases selection towards unexplored
regions of decision space. Performance biases selec-
tion towards regions of decision space deemed optimal
by the current induced model. Obviously the weight-
ing between novelty and performance is an important
bias to ISO. In the following experimental results, both
performance and novelty were weighted equally.

4 Experimental Results

In this section, we focus on using AIMS to support
the design of internal combustion engines. The exper-
iments can be divided into two broad classes: those
dealing with model formation and those dealing with
model utilization. In the model formation phase, we
demonstrate how AIMS can produce a Pareto optimal
set of models with respect to multiple model forma-
tion objectives. In the model utilization phase, we
show how AIMS can be used to generate a Pareto op-
timal set of design decisions with respect to multiple
engine design objectives. Before we go into the de-
tails of model formation and utilization, we describe
the physics-based simulator and how it was used to
construct examples for learning.

4.1 The Simulator

An analytical simulator for a turbo-compounded diesel
engine [Assanis & Heywood 1986] is used in these ex-
periments. Although the simulator has been verified
to give accurate predictions of engine performance, it
is quite slow and takes about 150-200 CPU seconds for
each simulation on a DECstation 3100 (with 24 MB of
physical memory). This evaluation speed is unaccept-
able for real time analysis and synthesis.

4.2 Example Generation

The decision space in this experiment had 7 dimen-
sions and consisted of stroke to bore ratio (STBRAT),
injection timing (TINJ), fuel mass injected per cy-
cle (FMIN), compression ratio (CR), engine speed
(SPEED), number of cylinders (NCYL), and volumet-
ric capacity (VOL). The performance of each engine
design was measured by the simulator in terms of two
performance variables brake horse power (BHP) and
brake specific fuel consumption (BSFC). The dimen-
sions of the decision space were chosen by the simu-
lator designers and cover a range of possible engine
designs and are shown in Table 1. These ranges were
used to generate 1000 examples by randomly selecting
design within this space based on a uniform distribu-
tion. The ranges for the performance parameters are
estimated by finding the minimum an maximum per-
formance values over all the examples and are shown
in Table 2.

Table 1: The decision parameters.

Parameter | Units | Minimum | Maximum

STBRAT 0.8 1.2

TINJ degtees 320 335

FMIN g/cycle 0.1 0.4
CR 13 17

SPEED Ipm 1000 2400

NCYL 2 8
VOL Titers b 15

Table 2: The performance parameters.

Parameter Units Minimum | Maximum |
BHP KW 5 615
BSFC | g/KW-hr | 187 5904

4.3 Model Formation

For this experiment, we compared three different in-
duction algorithms implemented by CRL: simple re-
cursive splitting (SRS), linear recursive splitting (LRS)
and backpropagation (BPG). SRS is similar to PLS
[Rendell, 1983] and CART [Breiman, et al. 1984]. LRS
is like SRS but uses linear regression to form function
within each input space region created. Utgoff’s per-
ceptron tree learning algorithm [Utgoff, 1988] is similar

to LRS but uses a perceptron algorithm at the nodes
instead of linear regression. BPG is an extension of
the backpropagation algorithm given in [McClelland
& Rumelhart, 1987).

Each algorithin comnpared had one or more control pa-
rameters which were optimized by ISO. The model for-
mation objectives were predictive accuracy, model for-
mation time, and model evaluation time. To evaluate
an inductive bias, 10 model formation problems were
formed by randomly selecting n training examples (n
= 20, 40, 80, 160, or 320) and 320 testing examples
from the original set of 1000 examples. The standard
error of each model produced was measured and all
errors were averaged to calculate the predictive ac-
curacy which was defined as (1 - (average standard
error / range))*100. Model formation time and eval-
uation time were measured in terms of seconds and
milli-seconds respectively.

10 P
- —e » —e— » i

d g e ~— o b3
1 — n — ‘
F —e 10 — 1% P
$ = 20 —— Im -
- =1 ‘3
e |
[32 !
L]
i v

F o
b3 b
-3

o = °

T
1.0 0.7 [X] 0.9 1.0
Predictive Accmrscy

T
o1 0.9

°
o

Predictive Accuracy

Figure 2: Accuracy vs. mode! formation and evalua-
tion time by example set size.

5
o

—e— s
J~—— s
—a— p

l

T
-~

-
-

Modet Formation Time, s
~
A
- -
Modd EKvalustion Timme, ms

°

T T T
0.7 os 0.9 1.0 o7 0.8 0.9 1.0

Predictive Accurscy Predictive Accurscy

Figure 3: Accuracy vs. model formation and evalua-
tion time by algorithin.

Figure 2 shows how the size of the dominated region
increases as more examples are used to form the mod-
els. In the case of model formation time (2a) fewer
examples should be used if faster formation times are
required but, in the case of model evaluation time (2b),
more examples are a always better. Figure 3 shows
the Pareto optimal biases for each induction algorithm
compared. From these Pareto optimal sets, AIMS can
now select the best inductive bias based on a model
formation or model evaluation time constraints.

4.4 Model Utilization

In this phase, the engine designer uses models pro-
duced by AIMS in conjunction with ISO. For this ex-
periment, 800 training examples were used for model
formation which resulted in BHP and BSFC models
with an accuracy of 96% and 97% respectively. These
models were then used by ISO to construct a Pareto
optimal set of engine designs with respect to BHP and
BSFC. Figure 4a shows how these two objectives trade
off. More power can only be attained at the expense of
fuel efficiency and at about 550 KW, the tradeoff be-
comes severe. Figure 4b shows how individual engine
design parameters such as STBRAT and TIMING re-
late to BHP for Pareto optimal designs. If more power
is required, both STBRAT and TIMING must be in-

creased.

208 12 — 30
—o— STBRAT
3 T
114
B 2007 =
2 p
2 101 130
219:1 @ g
H 0.9
a b
190 — — 0s r r —— 320
200 300 40 0 60 700 200 300 400 300 600 700

BHP, KW BHP, KW

Figure 4: Tradeofls between the design objectives BHP
and BSFC, and the relationship between BHP and de-
sign parameters STBRAT and TINJ.

Table 3: Final decision parameters.

Parameter | Units | Value
“STBRAT 1.17
TINJ degrees | 332
FMIN g/cycle | 0.217
CR 14.32
SPEED Ipm 2352
NCYL 6
VOL liters 12.67

Table 4: Final performance parameters.

Parameter Units Predicted | Actual
BHP KW 475.2 454.5
BSFC | g/KW/hr | 1925 | 202.5

Typically, the engine designer iteratively converges
on an engine design by using AIMS to discover re-
lationships between the design objectives and Pareto-
optimal engine designs, restricting decision space or
change the objectives, and repeating the process until
a single point in decision space has been chosen. This
point is then verified with the original engine simnula-
tor. Tables 3 and 4 illustrate an example of a design
constructed with this procedure. For this problem the
designer wanted an engine with a power of about 450
KW with the least number of cylinders. Note that

the predicted performance of the induced model was
optimistic, but within the estimated error the models.
For better predictive accuracy, more examples niust be
used and, based on our initial experiments, we think
the methodology will scale up nicely. For more details
concerning applications of AIMS to engine design see
[Lu, et al. 1991].

5 Conclusions and Future Research

The dynamic complexity of engineering decision mak-
ing puts enormous demands on designers’ knowledge.
In many cases, relationships among design parame-
ters are simply too complex to be understood with-
out computational assistance. We have described a
knowledge processing framework designed to support
decision making in this sort of complex and chang-
ing environment. The AIMS framework combines ma-
chine learning and optimization techniques to trans-
form knowledge embedded in physics-based simula-
tors into more usable representations. We have argued
for a two phase approach to knowledge processing in
this area. The model formation phase seeks to build
a Pareto optimal set of models. The model utiliza-
tion phase then uses one of those models to gener-
ate a Pareto optimal set of decisions for the decision
maker to choose from. We have continually empha-
sized the advantages of multiple objective optimiza-
tion techniques, especially as a safeguard against in-
complete knowledge of performance trade-offs.

Our main goal for the future is to complete and docu-
ment a prototype system that can be distributed to our
colleagues tackling real world design problems. Only
through this sort of feedback can we validate and im-
prove our ideas in the area where it matters most.

Acknowledgements

This research was sponsored in part by the National
Science Foundation (DMC-8657116). Special thanks
to Dennis Assanis for his insight into engine design and
support in using the combustion engine simulator.

References

Assanis, D. N., & J. B. Heywood. (1986). Develop-
nmient and use of a computer simulation of the turbo-
compounded diesel system for engine performance and
component heat transfer studies. SAE Technical Pa-
pet Series No. 860329. Reprinted from The Adiabatic
Engine: Global Developments (pp. 95-120). Warren-
dale, PA: Society for Automotive Engineers.

Breiman, L., Friedman, J., Olshen, R.A., and Stone,
C. J. (1984). Classification and Regression Trees.
Wadsworth International Group, Belmont, CA.

Buchanan, T. (1986). Multiple objective mathemati-
cal programming: A review. New Zealand Operational
Research, Vol. 14, No. 1, (pp. 1-27).

Chankong, V. & Haimes, Y. Y. (1983). Optimization-

based methods for multiobjective decision- making:
An overview. Large Scale Systems, Vol. 5, (pp. 1-
33).

Hwang, C. L. & Masud, A. S. M. (1979). Muliiple
objective decision making methods and applications: A
state-of-the-art survey. New York: Springer Verlag.

Hwang, C. L., Paidy, S. R., Yoon, K. & Masud, A.
S. M. (1980). Mathematical programming with multi-
ple objectives: A tutorial. Compuiing and Operations
Research, Vol 7, (pp. 5- 31).

Lu, S. C-Y. & Tcheng, D. (1990). Building layered
models to support engineering decision making: A ma-
chine learning approach. Journal of Engineering for
Industry, ASME Transactions, Vol. 113, No. 1, (pp.
1-9).

Lu, S. C-Y., Yerramareddy, S., Tcheng, D. & Assanis,
D. N. (1991). A machine learning approach to model
formation and utilization for engineering design. Sub-
mitted to JEEE Transactions Special Issue on Machine
Learning.

McClelland, J. & Rumelhart, D. (1987). Ezplorations
in parallel distributed processing: A handbook of mod-

els, programs and ezercises, MIT Press, Cambridge,
MA.

Quinlan, R. (1986). Induction of decision trees. Ma-
chine Learning, Vol. 1, No. 1, (pp. 81-106).

Rendell, L. (1983). A new-basis for state-space learn-
ing systems and a successful implementation. Artifi-
cial Intelligence, Vol. 20, No. 4, (pp. 369-392).

Tcheng, D., Lambert, B., Lu, S. C-Y. & Rendell, L.
(1989). Building robust learning systems by combining
induction and optimization. In Proceedings IJCAI 89,
San Mateo, CA: Morgan Kaufmann.

Tcheng, D., Lambert, B., & Lu, S. C-Y. (1989). Gen-
eralized recursive splitting algorithms for learning hy-
brid concepts. In Proceedings Sizth Annual Workshop
on Machine Learning. San Mateo, CA: Motrgan Kauf-
mann.

Utgoff, P. (1988), Perceptron trees: A case study in
hybrid concept representation, in Proceedings of the
American Association for Artificial Intelligence, Mor-
gan Kaufmann, San Mateo, CA, pp. 601-606.

Zadeh, L. A. (1963), Optimality and Non-Scalar-
Valued Performance Criteria, IEEE Transactions on
Automatic Control, Vol. AC-8, pp. 59-60.

