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ABSTRACT

. 'This paper describes the Competitive Relation Learner (CRL), a generalized recursive splitting algorithm capable of

producing a wide range of hybrid concept representations through the competitive application of multiple learning
strategies, multiple decomposition strategies, and multiple decomposition evaluation strategies. Experimental re-
sults are reported that demonstrate CRL's ability to outperform several well known fixed-bias strategies.

INTRODUCTION

Research on methods for learning concepts from examples occupies a central position in the discipline of machine
learning (Michalski, Carbonell, & Mitchell, 1983). Among those who study the problem of learning from exam-
ples, it is now widely recognized that each concept description language and search strategy has an inherent inductive
bias, that is, an extra-evidential preference for some hypotheses over others. Furthermare, no single inductive bias
will yield optimal performance on all problems (Mitchell, 1980; Utgoff, 1986). Thus, a central concern of machine
learning theorists is to discover methods for intelligently selecting the best inductive bias for a particular problem
relative to a given sct of user objectives. One way to address this problem is to develop inductive systems capable
of producing hybrid concept representations which simultaneously capitalize on the strengths and minimize the
weaknesses of two or more distinct inductive biases (Schlimmer, 1987; Utgoff, 1988). Utgoff's (1988) perceptron
trees exemplify this approach by combining decision-trees with networks of linear threshold units.

However, the desire to design systems to learn continuous functions in the engineering domain (Lu & Chen,
1987) has motivated us to extend Utgoff's insight and to develop hybrid systems capable of learning continuous,
real-to-real mappings. The inductive system we have developed generalizes the methodology of decision-tree build-
ing algorithms to include multiple problem decomposition strategics, multiple decomposition evaluation functions,
and multiple learning strategies.

In what follows, we first suggest that well known decision-tree building algorithms like ID3 (Quinlan, 1986),
PLS (Rendell, 1983), and CART (Breiman, Friedman, Olshen, & Stone, 1984) as well as recently developed hybrids
like Utgoff's percepiron trees (1988) can all be viewed as more or less partial instantiations of an abstract class of al-
gorithms we call recursive splitting algorithms. Second, we describe the Competitive Relation Learner (CRL), our
implementation of a generalized recursive splitter. Finally, we present experimental results that compare the perfor-
mance of CRL to several well known strategies.

GENERALIZED RECURSIVE SPLITTING ALGORITHMS

The principle factor motivating the design of CRL (aside from the necd to learn piecewise continuous functions) was
the observation that the behavior of a recursive splitting algorithm depends on three factors: (1) how candidate de-
compositions are generated; (2) how candidate decompositions are ¢valuated; and (3) how predictions are made within
subregions (see also Breiman, er al., 1984). Analysis of traditional recursive splitting algorithms reveals that each
method possesses only one decomposition strategy, one decomposition evaluation function, and one learning strate-
gy (i.e., a method for making predictions in each subregion). For example, ID3 (Quinlan, 1983) creates n-way splits
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on nominal feature dimensions, evaluates these splits with an entropy minimization function, and assigns the most
frequently occurring class label to each subregion (i.c., leaf node). PLS creates binary splits perpendicular to scalar
feature dimensions, chooses the decomposition that maximizes its dissimilarity metric, and attaches the mean wtility
to each subregion. Utgoff's (1988) novel contribution lay in realizing that performance could be improved by put-
ting more powerful predictors (that is, learning strategies) at the leaf nodes. His perceptron trees first attempt to clas-
sify all instances with a single network of threshold logic units. Failing that, they impose n-way splits along nomi-
nal attribute dimensions, evaluate splits by entropy minimization, and insert perceptrons at the leaf nodes.

Clearly, any fixed combination of decomposition, evaluation, and prediction stralegies may be ideal for a particu-
lar class of problems but will fail to provide optimal performance on others. The CRL system was designed to
achieve more robust performance across problem domains. CRL is a general system for synthesizing and selecting
hybrid concept representations. The current implementation contains four classes of learning stratcgies (mean, regres-
sion, neural net, and exemplar), three decomposition strategies (distance-based, population-based, and centroid-based),
and a range of decomposition evaluation functions (for more detailed description of CRL's various strategies, see
Tcheng, Lambert, Lu, & Rendell, in press). The design is modular, and new strategies can be added incrementally as
long as they adhere to CRL standard input-output specifications.

THE CRL ALGORITHM

CRL is a straightforward generalization of the simple recursive splitting algorithm— the difference being that CRL
evaluates multiple learning and decomposition strategy combinations in parallel. CRL begins with a single input
space region containing every example and estimatcs the error in the region. The error of a region is determined by
applying each active learning strategy to the examples and recording the error of the most accurate hypothesis.

Next, it must be determined whether or not further decomposition will reduce the overall hypothesis error. To do
this, CRL applies all active decomposition strategies and evaluates the resulting candidate decompositions by com-
puting the error of the resulting regions in the manner described above. The most valuable decomposition, the one
that brings about the greatest overall error reduction, is used to create new subregions. This process is recursively
applied to each subregion until one of the following three stopping criteria is met: (1) the error of the overall hy-
pothesis ceases to decrease more than a specified threshold; (2) the number of examples in a candidate subregion falls
below a specified threshold; or (3) the time consumed exceeds a specified threshold.

EXPERIMENTAL RESULTS

CRL's task in this example is to predict the surface roughness of a machined part based on the control parameters of
the cutting tool. Examples were generated by a mechanistic simulator for the intermittent turning process (Zhang,
1989). The simulator mapped three input variables—feed rate, depth of cut, and revolutions per minute to one out-
put value—surface roughness.

For this problem, the user's objective was defined in terms of hypothesis accuracy. Accuracy was measured by
training CRL on 100 examples and testing on 100 different examples. For each trial, both training and testing ex-
amples were randomly selected. Hypothesis formation time was controlled by an CRL control parameter which
placed an upper limit on the amount of CPU time that could be used to form any single hypothesis. For the results
reported below, the time limit was 60 CPU seconds (on a SUN/3 180 with 24 Meg).

The best hypothesis produced by CRL took the form of a PL.S-like decision tree with linear functions at the
leaves and had an error of 145 (variance between predicted and actual SR). For comparison, several familiar biases
were also tested on the same problem. The error of the best hypothesis of each of these strategies was as follows:
averaging—2125, perceptron—855, linear regression-827, PLS-750, nearest-neighbor lookup—684. Strategies with
parameterized bias received roughly equal optimization resources.

CONCLUSIONS

In this essay, we have stressed the representational advantages of generalized recursive splitting algorithms like CRL.
The experimental results presented here suggest that a generalized recursive splitting algorithm can outperform most
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other methods on this problem (where the goal is to maximize predictive accuracy). We believe that CRL's perfor-
mance advantage is a direct consequence of its ability to select from a diverse set of available strategies (via competi-
tion) that decomposition strategy, learning strategy, and decomposition evaluation function which results in the
most accurate hypothesis.

The power of a generalized recursive splitting algorithm lies in the scope of its representational capabilities. With
more than 100 tunable biases of its own, however, a system like CRL is difficult to use. Rather than viewing CRL
as a stand-alone learning system, it is more usefully conceived as defining a huge inductive bias space which is then
searched by an independent optimization system. Instead of specifying obscure CRL control parameters, the user
would specify his performance objectives (e.g., hypothesis accuracy, formation time, evaluation time, comprehensi-
bility) to the optimizer which would, it turn, select the biases for him. Finally, such a system ought to learmn meta-
rules for the optimizer which relate problem characteristics (e.g., number of examples, problem domain, number and
type of features, and user objectives) to desirable regions of inductive bias space (Rendell, Seshu, & Tcheng, 1987).
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