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Abstract 

 Many medication errors are caused by look-alike and sound-alike medication names, yet 

few procedures exist to assure the safety of new drug nomenclature or to identify confusingly 

similar names from within existing databases. Until now, a theoretical model to explain look- 

and sound-alike errors has also been lacking, as has any quantitative measure of similarity 

between names. Drawing on recent research in psycholinguistics, this report outlines a 

theoretical model of medication name confusions. From this model, three automated, 

quantitative measures of orthographic (i.e., spelling) similarity were identified (bigram 

similarity, trigram similarity, and Levenshtein distance). The relationship between orthographic 

similarity and the likelihood of being involved in a medication error was examined. 

 Known look-alike and sound-alike error pairs (N=969) were identified from published 

reports. Control pairs (N=969) were selected at random from the general index of USP-DI, 

Volume I: Drug Information for the Health Care Professional. For each measure of similarity, 

the frequency distribution of similarity scores for error pairs was compared to the distribution 

of similarity scores for control pairs. Three parallel, unmatched case-control studies were 

conducted to discover whether similarity was a significant risk factor for medication errors. 

Finally, prognostic tests based on the three similarity measures were developed and evaluated.  

 For each similarity measure, the frequency distribution of error pairs was significantly 

different than that for control pairs. Also for each similarity measure, orthographic similarity 

was a significant risk factor for medication errors. Pairs of names whose similarity exceeded a 

preset threshold were between 25 and 523 times more likely to be involved in a medication 

error than pairs whose similarity did not exceed the threshold. A prognostic test based on 

Levenshtein distance was developed that correctly identified 91% of all pairs as either errors or 

controls. This test had a sensitivity of 84% and a specificity of 99%. 

 Automated measures of medication name similarity can be used to form the basis of 

highly accurate, sensitive and specific prognostic tests for look- and sound-alike medication 

errors. These methods are comprehensive, theory-based, efficient, objective and reliable. Their 

use in the medication name approval process has the potential to reduce the incidence of look- 

and sound-alike medication errors. 
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 In a society where nearly 2 billion prescriptions are filled annually in the community 

setting, and 30 million medication doses are administered daily in long term care settings, 

medication errors present a serious threat to patient welfare and a significant liability to health 

professionals and their insurers.1 Many factors contribute to medication errors, but one factor 

consistently associated with errors is the existence of confusing pairs of medication names. 

Look-alike and sound-alike medication names play a part in perhaps one-quarter of all 

medication errors.2,3 The agencies responsible for approving trademarks and established (i.e., 

nonproprietary, generic) names for new drug products, primarily the U.S. Food and Drug 

Administration (FDA) and the United States Adopted Names Council (USAN), are in need of 

valid and reliable methods that can assess the likelihood of look-and sound-alike medication 

errors before they occur.4 If such methods could be developed, it might be possible to reduce 

the number of confusing names that reach the marketplace. The same methods could be used to 

identify confusing pairs within existing databases of medication names. Once identified, 

safeguards could be built into drug information systems to reduce the probability of confusion 

in clinical practice.5  

 Until now, practitioners have had to rely on voluntary reports of errors in order to 

identify potentially confusing pairs of medication names.2,3,6,7 What’s more, the only available 

techniques for assessing the confusion potential of new trademark and established names have 

involved panels of experts completing a variety of rating scales.6 The reliability and validity of 

these instruments have not been firmly established. In addition, the sheer number of existing 

medication names, more than 15,000 in the United States alone, makes it unlikely that a manual 

evaluation of confusion potential would ever be exhaustive enough to establish confidence in 

the resulting assessments.8,9 To illustrate the difficulty of manual evaluation, consider that 
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roughly 15,000 comparisons would need to be made to assess the confusion potential of a single 

new name. To identify confusing pairs from among existing names, (N2-N)/2 unique pairs of 

names would need to be considered. With N=15,000, a staggering 112,492,500 comparisons are 

needed! Clearly such a task is impossible without automated methods for evaluating confusion 

potential.  

 Fortunately, it is now possible to design objective, computer-based measures of 

orthographic (i.e., spelling, look-alike) and phonological (i.e., sound-alike) similarity. These 

similarity measures can then serve as the basis for predictions about confusion potential. 

Although lacking some of the features of manual evaluation by experts (e.g., no consideration of 

dose, indication, or physical appearance of the drug), the computerized measures of lexical (i.e., 

word-word) similarity are objective, reliable, and are based on well-established psycholinguistic 

theory. Automated methods for similarity-based searching of trademark databases are already 

available from commercial vendors, and they are used routinely by intellectual property 

attorneys and other interested parties.10,11 The automated methods make it possible to do 

exhaustive comparisons between proposed new medication names and databases of existing 

names. Still, these methods require validation before considering their use in a regulatory or 

error-prevention context. This report describes a series of validation experiments designed to 

assess and optimize the error-predicting potential of computerized measures of orthographic 

similarity. The end-product of these experiments was a prognostic test that could be used to 

identify confusingly similar pairs among new and existing medication names. 

Theoretical Background 

 To date, the literature on look-alike and sound-alike medication errors has been largely 

atheoretical. However, there is a vast literature in psycholinguistics and experimental 

psychology that describes the mental representations and cognitive processes that produce 
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lexical confusions in speaking, listening, reading, and writing, as well as in short- and long-term 

memory.12-24 These psychological experiments have been conducted primarily on college 

undergraduates using common English words as stimulus materials. A similar pattern of results 

might be expected if participants were health professionals and the stimulus words were 

medication names. Hence, the measures of lexical similarity (i.e., similarity between words) 

developed and tested here are grounded in psycholinguistic theory.  

 The heart of all lexical processing is the mental lexicon or “mental dictionary” where 

information about words is stored. Words are indexed in the mental lexicon by their 

orthographic (i.e., spelling), phonological (i.e., sound), syntactic (i.e., grammatical) and semantic 

(i.e., meaning) representations.25 These representations are directly involved in the cognitive 

processes that allow healthy adults to access the correct words from memory when speaking, 

listening, writing, and reading. In general, words with similar orthographic, phonological, 

syntactic or semantic representations are more likely than others to be confused. This general 

pattern has been observed across a wide range of experimental paradigms. For example, when 

people make errors in recall from immediate memory, they tend to recall words that sound 

similar to the target word.13,26 Errors in recognition memory are more likely when distractor 

items are semantically similar to the target item.27 Words with many orthographically or 

phonologically similar “neighbors” take longer to recognize and are more likely to be 

incorrectly recognized than words with few such neighbors.21,23 Speech errors involving the 

substitution of one word for another (e.g., saying pollution instead of population) are more 

likely to involve semantically and/or phonologically similar words.24,28 In summary, evidence 

from psycholinguistics clearly demonstrates that lexical similarity increases the likelihood of 

errors in recall, visual and auditory word recognition, and spontaneous speech.  
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Research Questions 

 This research was designed to identify and illuminate relationships between lexical 

similarity and lexical confusions in the domain of medication names. Answers were sought for 

several specific questions:  What is the relationship between orthographic similarity and the 

likelihood of lexical confusion? Is lexical similarity a significant risk factor for lexical confusion? 

What measure of orthographic similarity will most accurately predict lexical confusions? The 

central practical concern was to discover whether automated measures of lexical similarity 

could serve as valid predictors of medication error potential, such that they might be used to 

facilitate the development of safer, more error-resistant drug nomenclature. 

Hypotheses 

 This study evaluated the ability of three measures of orthographic similarity to 

distinguish between confusing and non-confusing pairs of medication names. Three specific 

hypotheses were tested. In the following hypotheses, the term “error pair” refers to a published 

pair of confusing medication names.  Pairs of names selected at random from a large database 

of names are referred to as “control pairs.” Details about the selection of error and control pairs 

are given in the Method section. 

H1: The frequency distribution of orthographic similarity scores for known error pairs 

differs from that observed for control pairs, with known error pairs being more similar, 

on average, than control pairs. 

H2: When a threshold (i.e., a cutoff value) is used to define similarity as a dichotomous 

exposure variable, orthographic similarity is a significant risk factor for look-alike 

medication errors. 
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H3: By plotting receiver operator characteristic (ROC) curves, orthographic similarity 

can be used to construct a prognostic test that has at least 80±5% sensitivity and 90±5% 

specificity to predict lexical confusions. 

Research Design 

 Two related research designs were used to test the stated hypotheses. Both were 

observational and retrospective. To compare the frequency distribution of error pairs and 

control pairs and to examine the association between orthographic similarity and the 

probability of  lexical confusion, a case-control design was employed. Cases were drawn from 

published reports of medication errors and controls were drawn at random from all possible 

pairs of medication names.29 To evaluate the usefulness of lexical similarity measures as the 

basis for a prognostic test that would predict whether or not a pair of names would be confused 

in clinical practice, a modified case-control design, appropriate for the evaluation of new 

prognostic tests, was used. 29-32 

Method 

Source of Medication Names 

 Error pairs (Cases). Pairs of medication names either known to have been confused in 

clinical practice, or judged by experts to be confusingly similar, were compiled from several 

published lists.3,6,33,34 These lists were combined, and after duplicate pairs were deleted, 

N=969 unique error pairs were identified. As an illustration, Table 1 shows 20 of the error pairs 

used in the study. 

------------------------------ 
Table 1 about here. 

------------------------------ 

 Control pairs. Control pairs of medication names (N=969) were selected at random from 

an electronic version of the General Index to the U. S. Pharmacopeia’s USP-DI, Volume I: Drug 
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Information for the Health Care Professional.8 Table 2 shows 20 of the control pairs used in the 

current  study. (A complete listing of the error and control pairs used is available from the 

author.) 

------------------------------ 
Table 2 about here. 

------------------------------ 

Measurement of Orthographic String Similarity 

 From the point of view of most computer programs, and for the purpose of assessing 

similarity, words are viewed as sequences or “strings” of letters. In the experiments reported 

here, orthographic string similarity was measured by three different methods:  bigram, trigram, 

and Levenshtein distance.35 All measures of string similarity were computed using computer 

programs written by the author in the programming language Lisp. All comparisons were case-

insensitive. In effect, all names were converted to a single case (either upper or lower) before 

similarity measures were taken. 

 Both bigram and trigram methods are examples of n-gram measures of string similarity. 

For a given pair of medication names,  n-gram measures were defined as follows.35,36 First, the 

unique n-grams (i.e., n-letter sub-sequences) in each name were generated. Next, the number of 

n-grams common to the two names was tallied. Finally, n-gram string similarity (S) was defined 

by the Dice coefficient:  

 
 
S =

2C

A + B
  

where A was the number of unique n-grams in the first word, B the number of unique n-grams 

in the second word, and C the number of unique n-grams common to the two words.37 Both 

bigram (i.e. two letter sub-sequences) and trigram (i.e. three letter sub-sequences) measures 

were used in these investigations. Consider an example. For the drug Tylenol®, the unique 
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trigrams are tyl, yle, len, eno, and nol. For the drug atenolol, the unique trigrams are ate, ten, 

eno, nol, olo, and lol. The trigram string similarity between the names Tylenol® and atenolol, 

which share two trigrams in common (eno and nol), is (2*2)/(5+6)=.364.  

 Levenshtein distance is a measure of orthographic string similarity that forms the basis 

for several widely used spell-checking and text processing utilities.35 Levenshtein distance was 

defined as the number of edit operations (e.g., substitutions, insertions or deletions) needed to 

transform one word into another. The specific algorithm used to implement Levenshtein 

distance in these investigations was designed by Wagner and Fischer.35,38 Consider the names 

Zantac®  and Xanax®. In order to transform the word Zantac® into the word Xanax®, one must 

change the Z to an X, delete the t, and change the c to an x. Three edit operations are required;  

thus, the Levenshtein distance between the two names is 3. 

Analysis Plan 

 If lexical similarity was to distinguish between error pairs and control pairs, then the 

frequency distribution of similarities for error pairs should, at minimum, have been 

significantly different than the frequency distribution of similarities for control pairs (see 

Hypothesis 1). To test this hypothesis, orthographic similarity was calculated for N=969 error 

pairs and for N=969 control pairs, and a chi-square test of independence was performed on the 

resulting 2 X 11 contingency table (e.g., error/control X 11 similarity ranges).  With overall 

N=1938, the chi-square contingency test at a=.01 had greater than 99% power to detect effect 

sizes larger than w=.20.39 

 To establish whether lexical similarity represented a significant risk factor for being 

involved in a look- or sound-alike medication error (see Hypothesis 2), an unmatched case 

control study was conducted with N=969 cases (i.e., error pairs) and N=969 controls.40 Relative 

risk was estimated with the odds ratio computed from a 2 X 2 contingency table (e.g., 
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exposure/no exposure X case/control). Significance of the odds ratio was tested via the chi-

square statistic with 1 degree of freedom.40 For n-gram methods, exposure was defined as 

similarity greater than or equal to 0.10 by the Dice coefficient. For Levenshtein distance, 

exposure was defined as distance less than or equal to 10 edit operations. Assuming an 

exposure rate of 1% among controls, a=.01, and N=969 for both cases and controls, chi-square 

tests had 90% power to detect a relative risk greater than 4.40 

 The third phase of the study attempted to construct a prognostic test using automated 

measures of lexical similarity to predict which pairs of names were error pairs and which were 

controls. Receiver operator characteristic (ROC) curves were plotted for each measure of lexical 

similarity described above. The curves were plotted by systematically varying the cutoff value 

of the similarity score that corresponded to a positive prognostic test. Error pairs whose 

similarity scores exceeded the threshold were termed true positives. Control pairs that exceeded 

the threshold were false positives. Error pairs that failed to exceed the threshold were false 

negatives. Control pairs that failed to exceed the threshold were true negatives. Predictive 

accuracy was defined as (true positives + true negatives)/(true positives + true negatives + false 

positives + false negatives). Accuracy was measured and plotted at various thresholds. 

Sensitivity was defined as the true positives/(true positives + false negatives). Specificity was 

defined as true negatives/(true negatives + false positives).32 At each cutoff value, sensitivity 

(i.e., the true positive rate) was plotted against 1-specificity (i.e., the false positive rate). The 

resulting ROC curves were used to select the optimal cutoff value for each test. With N=969 

cases and controls, it was possible to estimate 99% confidence intervals for sensitivity and 

specificity of ±5%.29 

 Positive predictive value was defined as the probability that a pair was an error pair, 

given a positive test. Positive predictive value was computed by the following formula29: 
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Sensitivity × Prior Probability

Sensitivity × Prior Probability( ) + 1 − Specificity( ) × 1 − Prior Probability( )[ ] 

Negative predictive value was defined as the probability that a pair was a control pair, given a 

negative test. Negative predictive value was computed by the following formula29: 

  

Specificity × 1 − Prior Probability( )
Specificity × 1 − Prior Probability( )[ ] + 1 − Sensitivity( ) × Prior Probability( )[ ] 

The predictive value of a positive and a negative test was reported at various prior probabilities 

at the optimal cutoff for each measure of similarity.29,32  

Results 

 Frequency distributions. The frequency distributions of similarity scores for error pairs 

and control pairs, for each measure of similarity (i.e., bigram, trigram, and Levenshtein 

distance), are given in Figures 1-3. The Dice coefficient for bigram and trigram scores took on 

values from 0 to 1. Bigram and trigram scores were divided into 11 intervals. For bigram and 

trigram measures (Figures 1 and 2), simple visual inspection reveals that the similarity scores 

for error pairs were skewed to the high end of the scale, while the scores for control pairs were 

skewed to the low end of the scale. For the Levenshtein distance measure (Figure 3), scores for 

error pairs were skewed to the low end of the scale, while scores for control pairs were skewed 

to the high end of the scale. In each case, the chi-square test of independence was highly 

significant: for bigram string similarity, chi-square=1281.08, df=10, p<.00000; for trigram string 

similarity, chi-square= 1000.34, df=10, p<.00000; for Levenshtein distance, chi-square= 1573.02, 

df=10, p<.00000.  

------------------------------- 
Figures 1-3 about here. 
------------------------------- 

 Relative risk. For bigram and trigram string similarity measures, exposure was defined 

as similarity greater than or equal to 0.1. For Levenshtein distance, exposure was defined as 
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distance less than or equal to 10. These cutoffs were chosen somewhat arbitrarily, although they 

were intended to be conservative values (i.e., relatively low similarity, relatively large distance). 

Contingency tables for bigram, trigram and Levenshtein distance at these exposure levels are 

given in Tables 3-5 respectively. For each measure of similarity, relative risk was approximated 

by the odds ratio.40 For bigram string similarity, the odds ratio was substantially greater than 1 

(OR=34.01, 95%CI=(25.16, 45.98), chi-square=797.06, df=1, p<.00000), as it was for trigram 

similarity (OR=67.27, 95%CI=(47.04, 96.19), chi-square=974.48, df=1, p<.00000) and Levenshtein 

distance (OR=275.81, 95%CI=(145.52, 522.76), chi-square=1105.33, df=1, p<.00000). String 

similarity, regardless of how measured, was a significant risk factor for being involved in a 

look- or sound-alike medication error. Pairs of names whose similarity exceeded the specified 

threshold were between 25 and 523 times more likely to be involved in a medication error than 

those whose similarity did not exceed the threshold. 

------------------------------ 
Tables 3-5 about here. 
------------------------------ 

 Predictive accuracy. The predictive accuracy of each measure at various thresholds is 

given in Figures 4-6. The test with the highest overall accuracy (94%) was based on Levenshtein 

distance with a threshold of distance less than or equal to 6 (see Figure 6). The bigram test with 

the highest accuracy classified 89% of the pairs correctly and was based on a threshold of 

similarity ≥ 0.2 (see Figure 5). The trigram test with the highest accuracy classified 84% of the 

pairs correctly and was based on a threshold of similarity ≥ 0.1 (see Figure 5).  

------------------------------- 
Figures 4-6 about here. 
------------------------------- 

 Sensitivity and specificity: ROC Curves. Figures 7-9 show the receiver operator 

characteristic (ROC) curves for bigram, trigram, and Levenshtein distance respectively. ROC 
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curves display the tradeoff between sensitivity and specificity and are used to select the best 

threshold for a given diagnostic or prognostic test. The best point is at the “shoulder” of the 

ROC curve, the point of diminishing returns, where further increases in sensitivity are offset by 

decreases in specificity.29,32 For the bigram measure, the best threshold was similarity ≥ 0.3, 

where the test achieved 73% sensitivity and 98.6% specificity (see Figure 7). For the bigram 

measure, the best threshold was similarity ≥ 0.2, where the test achieved 58.6% sensitivity and 

99% specificity (see Figure 8). For the Levenshtein distance measure, the best threshold was 

distance ≤ 5, where the test achieved 84% sensitivity and 98.8% specificity (see Figure 9).  

------------------------------- 
Figures 7-9 about here. 
------------------------------- 

 Positive and negative predictive value. Estimates of positive and negative predictive 

value help clinicians interpret the results of diagnostic and prognostic tests. Positive predictive 

value is the probability that a pair was an error pair, given a positive test. Negative predictive 

value is the probability that a pair was a control pair, given a negative test. Both positive and 

negative predictive value were dependent on the prior probability of the event being predicted. 

In this context, prior probabilities corresponded to the error rate for look- and sound-alike 

medication errors. In practice, the rate is likely to be less than 5%.41 For each measure of 

similarity (or distance), the positive and negative predictive values were plotted at various prior 

probabilities (e.g., 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95, 0.99, 0.999). The positive predictive 

values for bigram, trigram, and Levenshtein distance are plotted in Figures 10-12. The negative 

predictive values are plotted in Figures 13-15. Note that more specific tests yield higher positive 

predictive value, and more sensitive tests yield higher negative predictive value.  

---------------------------------- 
Figures 10-15 about here. 
---------------------------------- 
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Discussion 

 Usefulness of the prognostic tests. In order for a prognostic test to be viable, three 

conditions, in increasing order of difficulty, must be met. First, cases and controls must be 

distributed differently with respect to the prognostic measure. Second, the prognostic measure 

must be a significant risk factor for the condition being predicted. Third, the test must have 

sufficiently high sensitivity, specificity, and positive and negative predictive value.29,32 All 

three of these conditions were met by the measures evaluated above. Hypotheses 1-3 were 

supported by the data. In each case, error pairs and control pairs were distributed differently 

with respect to the measures of orthographic similarity. In each case, orthographic similarity 

was a significant risk factor for being an error. In at least one case (i.e., Levenshtein distance) it 

was possible to construct a test with quite high values of sensitivity and specificity and with 

sufficiently high positive and negative predictive values at the relevant prior probabilities. 

Given its sensitivity and specificity at a threshold of distance ≤ 5, Levenshtein distance was the 

best measure tested. Using this cutoff in screening tests, one would expect to correctly identify 

84% of all true error pairs and 98.8% of all non-error pairs. Generally speaking, the rarer a 

condition, the more specific a test must be for it to be practically useful.29 If a test for a rare 

condition is not sufficiently specific, an unacceptably high number of false positives will be 

reported.  Since medication errors were assumed to be rare events, with an incidence of less 

than 1%, a more specific test was identified as best in this report. However, in the final analysis, 

the precise placement of a cutoff value depends on a careful consideration of the societal costs 

of false positives versus false negatives. 

 Regulatory implications. Given the results reported above, regulatory agencies that 

approve new drug nomenclature would be well-advised to explore the integration of 

automated similarity tests into their routine name approval procedures. One could imagine a 
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scenario in which candidate names submitted to USAN and FDA were routinely screened 

against all existing names. If the similarity between a candidate name and an existing name 

exceeded some established threshold (e.g., Levenshtein distance ≤5), the candidate name would 

be refused, or perhaps contingently accepted with appropriate precautions. If the similarity 

between the candidate name and existing names never exceeded the threshold, then the name 

would be approved. Analogously, every pair of names in the existing pharmacopeia could be 

screened in an effort to identify pairs that are confusingly similar. Once such pairs were 

identified, information about them could be added to the precautions section of drug references 

and to the contraindications field of electronic drug information systems.5  

 Need for debate on policy. If a test such as the one developed here were incorporated as 

part of the name approval process, discussion is required about how to set the threshold. This 

debate should focus on the costs associated with false positives and false negatives. In this 

context, a false positive would result in prohibiting a name that was not, in fact, likely to cause 

an error. The cost here would primarily be an opportunity cost for the company desiring a 

particular name. Not being able to use the name would mean forgoing the profits associated 

with one name while being forced to use another, ostensibly less desirable, though potentially 

safer, name. A false negative, in this context, would result in approving a name for a medication 

that was, in fact, likely to contribute to look- or sound-alike errors. The costs here would be the 

human costs associated with patient suffering and the monetary costs associated with avoidable 

hospitalizations as well as malpractice and/or liability litigation. Thus, the setting of a cutoff 

point becomes an important policy question deserving of public discussion and debate.  

 Conflicting concerns in medication naming. The effort to design error-resistant drug 

nomenclature is complicated by the need for new medication names to simultaneously satisfy 

commercial, professional, and safety-related concerns. New names must be reasonably safe and 
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free from confusion, but the terms must also be meaningful and memorable to physicians, 

nurses, pharmacists, and patients.  Names must be distinct, but medications that share an 

indication, mechanism of action or chemical constituent are often intentionally given the same 

prefix or suffix.9 Slight variants of certain medications are often intentionally given similar 

names, with only single letters distinguishing between products (e.g. Claritin® and Claritin D®), 

so that the value invested in one trademark can be easily transferred to another related mark 

owned by the same company. Safety, marketing, and professional concerns are all valid, but 

conflicts may surface when it comes to developing error-resistant nomenclature. 

Representatives of industry, the professions, and government must work together to establish 

administrative procedures so that conflicting concerns can be resolved safely and efficiently. 

 Importance of theory. The tests developed here succeeded in large part because they 

were based on sound, up to date, psycholinguistic theory. Future attempts to reduce the 

incidence of medication errors will also benefit from a strong theory base, whether it be in 

psychology, human factors, engineering, or computer science. With respect to look- and sound-

alike medication errors, success will depend on having an accurate and comprehensive 

understanding of the mental representations and processes that underlie language production 

and comprehension. 

 Beyond medication errors. The general principles that undergird the tests developed 

here are applicable to other domains where confusing nomenclature causes errors. For example, 

similar techniques should prove useful in identifying confusing pairs of medical procedure 

names and names of diagnoses. Even more generally, the procedures outlined here could be 

used to estimate the likelihood of trademark confusion in any domain, not just medications. In 

fact, several commercial trademark searching services, based on technologies related to those 

described here, already exist.10 
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Limitations 

 This investigation had several limitations. The database of known error pairs was quite 

small compared to the total possible number of confusing pairs, and the published lists of error 

pairs were gathered by ad hoc methods that may have reflected selection biases. The cases (i.e., 

error pairs) were drawn, in effect, from referral centers (e.g., the Medication Error Reporting 

Program, the Institute for Safe Medication Practices, FDA MedWatch). As such, the cases were 

likely to be more vividly similar than an unreported pair of confusing names. The sensitivity of 

a prognostic tests tends to be exaggerated under these circumstances.29 At the same time, 

though, control pairs were selected at random and were not known to be “disease free.” It is 

possible that some of the control pairs used here could have been involved in unreported 

medication errors. This fact would tend to cause specificity to be underestimated. 

 Even though a prognostic test was being evaluated, the research design was 

retrospective. Rather than saying test results accurately predicted errors, it would be more 

accurate to say test results accurately distinguished between known errors and controls. A more 

convincing test would measure the similarity of all possible pairs in advance, track error rates 

prospectively, and then examine the relationship between similarity and error rate. Of course, 

due to well-known problems in error reporting and error surveillance (i.e., low incidence rates 

and underreporting), such an investigation would be difficult to carry out. 

 The cases and controls were not matched for frequency of prescribing, an important 

variable to be considered when estimating the probability of confusion in actual practice. Each 

error listed in published reports was assumed to have occurred an equal number of times, even 

though errors involving the most frequently prescribed medications were likely to have 

occurred most frequently. The similarity measures studied here ignored similarity in product 

labeling and packaging, dosing, indication, and physical appearance of the dosage form. 
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International variations in spelling were ignored. Finally, the experiments lacked any concept of 

error severity; all errors were viewed as equally severe.  

 The phonological dimension of similarity was captured only indirectly by the 

orthographic measure used. The majority of English words obey regular rules that map spelling 

onto pronunciation.16 That is, words that are spelled similarly are normally pronounced 

similarly. But similarities among irregular words, where pronunciation is not a simple function 

of spelling, would not be captured by the present model. Relatedly, mispronunciations and 

regional variations in pronunciation could not be captured by the current measures.  These 

investigations did not draw clear distinctions between perceptual modalities (e.g., visual or 

auditory) or communications media (e.g., handwriting, typewriting, fax, computer monitor, 

telephone, face-to-face dialogue, etc.). Nor were distinctions drawn between recall, recognition, 

short- or long-term memory, all of which are known to be distinct psychologically. The position 

of letter bigrams or trigrams within a given name was ignored, even though there is evidence 

that similarity in initial syllables is much more likely to cause errors than similarity in later 

syllables. Abbreviations were ignored, as was the number of syllables in each medication name, 

although both of these features are known to contribute to confusion potential. Some 

abbreviations may actually mitigate errors. Unfortunately, research on this question constitutes 

a major unknown. Research on a model of phonological similarity is currently being undertaken 

in order to address these shortcomings.  

 Perhaps the most significant limitation to keep in mind is that these experiments treated 

medication errors as if they occurred in an abstract, decontextualized, psychological realm. In 

reality, medication errors occur within complex and dynamic systems of activity within equally 

complex physical layouts and organizational environments. Although orthographic and 

phonolgical similarity surely contribute to errors, a satisfactory model of medication errors 
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must encompass an understanding of how contextual factors--psychological, environmental, 

and organizational--combine to cause or prevent errors. In light of these limitations, the results 

presented must be interpreted cautiously. 

Conclusion 

 Automated, computer-based measures of orthographic (i.e., spelling) similarity can form 

the basis for a highly accurate, sensitive and specific tests of look- and sound-alike error 

potential. These tests are comprehensive, theory-based, reasonably inexpensive to conduct, 

objective, and reliable. The tests lack certain features of expert evaluation of error potential, 

especially with respect to potential similarity in indication, packaging, and dosing. The tests 

presently lack methods for directly assessing phonological (i.e., sound) similarity. Despite these 

limitations, the tests described here are already more objective, comprehensive, and reliable 

than current methods used to assure the safety of drug nomenclature. Therefore, in the interest 

of public health, it seems that regulatory agencies responsible for approving new drug 

nomenclature should move quickly to incorporate these or similar procedures into routine 

name-approval processes. 
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Table 1.  

Example of twenty error pairs selected at random 

dipyridamole disopyramide 

chlor-trimeton chloromycetin 

dimetane dimetapp 

cytotec cytoxan 

oracin orasone 

atarax marax 

docusate doxinate 

actacel actimmune 

enflurane isoflurane 

auralgan ophthalgan 

imfeon intropin 

voltaren vontrol 

pralidoxime pyridoxine 

citracal citrucel 

lopid slo-bid 

diphenatol diphenidol 

accubron accutane 

phos-flur phoslo 

percocet percodan 

catapres combipres 
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Note. This subset was randomly selected from the full list of 969 error pairs. All names are 

printed in lower case to emphasize that comparisons were case-insensitive. 
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Table 2.  

Example of twenty control pairs selected at random 

novo-tamoxifen carbinoxamine compound-drops 

immun-aid ascomp with codeine no.3 

alaxin beta-hc 

aminophylline technetium tc 99m hsa 

sodium dichloroacetate klerist-d 

propoxyphene hydrochloride, aspirin,  and 

caffeine 

slow fe 

promote with fiber diarrest 

potassium gluconate phentermine hydrochloride 

nitropress anectine 

myciguent velosulin human 

k-phos neutral lipisorb 

metaprel amrinone lactate 

6-mp canesten 

apo-metoclop contac jr. children's cold medicine 

preemie sma 20 minocycline hydrochloride 

dalgan atasol-8 

diphen cough citrolith 

anti-thymocyte serum infumorph 

poliovirus vaccine inactivated enhanced 

potency 

tarpaste 
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noxzema anti-acne pads regular strength allerest children's 

 

Note. This subset was randomly selected from the full list of 969 control pairs. All names are 

printed in lower case to emphasize that comparisons were case-insensitive.
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Table 3.  

Frequency of exposure to bigram similarity ≥ 0.1 for an unmatched sample of n=969 cases 

and n=969 controls 

 Error Control Total 

Similarity ≥ 0.1    

 Yes 913 (a) 314 (b) 1227 

 No 56 (c) 655 (d) 711 

Total 969 969 1938 

 

Relative risk≈odds-ratio=(a*d)/(b*c)29 
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Table 4.  

Frequency of exposure to trigram similarity ≥ 0.1 for an unmatched sample of n=969 cases 

and n=969 controls 

 Error Control Total 

Similarity ≥ 0.1    

 Yes 705 (a) 37 (b) 742 

 No 264 (c) 932 (d) 1196 

Total 969 969 1938 

 

Relative risk≈odds-ratio=(a*d)/(b*c)29 
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Table 5.  

Frequency of exposure to Levenshtein distance ≤ 10 for an unmatched sample of n=969 error 

pairs and n=969 control pairs 

 Error Control Total 

Distance ≤ 10    

 Yes 959 (a) 250 (b) 1227 

 No 10 (c) 719 (d) 711 

Total 969 969 1938 

 

Relative risk≈odds-ratio=(a*d)/(b*c)29 
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Figure Captions 

Figure 1. Histogram of bigram string similarities for error pairs (N=969) and control pairs 

(N=969). Vertical axis is on logarithmic scale. Light bars represent errors. Dark bars represent 

controls. Values at ends of vertical bars are frequencies. Values on the horizontal axis represent 

the bins for the histogram. For example, (0, 0.1) means “greater than 0 and less than 0.1,” and 

[0.1, 0.2) means “greater than or equal to 0.1 and less than 0.2.” 

 

Figure 2. Histogram of trigram string similarities for error pairs (N=969) and control pairs 

(N=969). Vertical axis is on logarithmic scale. Light bars represent errors. Dark bars represent 

controls. Values at ends of vertical bars are frequencies. Values on the horizontal axis represent 

the bins for the histogram. For example, (0, 0.1) means “greater than 0 and less than 0.1,” and 

[0.1, 0.2) means “greater than or equal to 0.1 and less than 0.2.” 

 

Figure 3. Histogram of Levenshtein distances for error pairs (N=969) and control pairs (N=969). 

Vertical axis is on logarithmic scale. Light bars represent errors. Dark bars represent controls. 

Values at ends of vertical bars are frequencies. Values on the horizontal axis represent the bins 

for the histogram. For example, [2, 4) means “greater than or equal to 2 and less than 4.” Note 

that Levenshtein is a distance measure, not a similarity measure, so errors pairs are skewed to 

the low end, and controls are skewed to the high end of the distance scale. 

 

Figure 4. Predictive accuracy of test based on bigram similarity at several thresholds. Accuracy 

values appear above each plotted point. 
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Figure 5. Predictive accuracy of test based on trigram similarity at several thresholds. Accuracy 

values appear above each plotted point. 

 

Figure 6. Predictive accuracy of test based on Levenshtein distance at several thresholds. 

Accuracy values appear above each plotted point. 

 

Figure 7.  ROC curve for bigram string similarity in the prediction of look- and sound-alike 

medication errors. The bigram similarity values of chosen cutoff points are in parentheses. 

 

Figure 8.  ROC curve for trigram string similarity in the prediction of look- and sound-alike 

medication errors. The trigram similarity values of chosen cutoff points are in parentheses. 

 

Figure 9.  ROC curve for edit distance in the prediction of look- and sound-alike medication 

errors. The Levenshtein distance values of chosen cutoff points are in parentheses. 

 

Figure 10. Positive predictive value of prognostic test based on bigram string similarity with 

73% sensitivity and 99% specificity. The cutoff for this test was similarity greater than or equal  

to 0.3. Positive predictive value is the probability that a pair is an error pair, given a positive 

test. 

 

Figure 11. Positive predictive value of prognostic test based on trigram string similarity with 

59% sensitivity and 99% specificity. The cutoff for this test was similarity greater than or equal  

to 0.2. Positive predictive value is the probability that a pair is an error pair, given a positive 

test. 
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Figure 12. Positive predictive value of prognostic test based on Levenshtein distance with 84% 

sensitivity and 98.8% specificity. The cutoff for this test was edit distance less than or equal to 5. 

Positive predictive value is the probability that a pair is an error pair, given a positive test. 

 

Figure 13. Negative predictive value of prognostic test based on bigram string similarity with 

73% sensitivity and 99% specificity. The cutoff for this test was similarity greater than or equal 

to 0.3. Negative predictive value is the probability that a pair is a control pair, given a negative 

test. 

 

Figure 14. Negative predictive value of prognostic test based on trigram string similarity with 

59% sensitivity and 99% specificity. The cutoff for this test was similarity greater than or equal 

to 0.2. Negative predictive value is the probability that a pair is a control pair, given a negative 

test. 

 

Figure 15. Negative predictive value of prognostic test based on edit distance with 84% 

sensitivity and 98.8% specificity. The cutoff for this test was edit distance less than or equal to 5. 

Negative predictive value is the probability that a pair is a control pair, given a negative test. 
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