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Abstract

Background: One out of every four medication errors reported in the United States is a

name-confusion error. The rate of name-confusion errors might be reduced if confusing

new names were not allowed on the market and if safeguards could be put in place to

avoid confusions between existing names. Objectives: To evaluate several prognostic

tests of drug name confusion, alone and in combination, with respect to their sensitivity,

specificity, and overall accuracy. Research Design: Case-control study. Twenty-two

different computerized measures of orthographic similarity, orthographic distance, and

phonetic similarity were used to compute similarity/distance scores for N = 1127 cases

(i.e., pairs of names that appeared in published error reports or national error databases)

and N = 1127 controls. Main Outcome Measures: Mean similarity/distance scores were

compared across cases and controls. The performance of each measure at distinguishing

between cases and controls was evaluated by 10-fold cross-validation. Dose-response

relationships were examined. Univariate and multivariate logistic regression models were

formed and evaluated by 10-fold cross-validation. Results:  Cases had significantly

higher similarity scores than controls. Every measure of similarity proved to be a

significant risk factor for error. There was a significant increasing trend in the odds-ratio

as a function of similarity. A three-predictor logistic regression model had cross-validated

sensitivity of 93.7%, specificity of 95.9% and accuracy of 94.8%. Conclusions:  A

sensitive and specific test of drug name confusion potential can be formed using

objective measures of orthographic similarity, orthographic distance, and phonetic

distance.

Words in Abstract: 241
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Introduction

Roughly one of every four errors reported to Medication Error Reporting Program

(MERP, administered by the Institute for Safe Medication Practices and the U. S.

Pharmacopeia, Inc.) involves a pair of drugs whose names look or sound alike (e.g.,

Altenol® and atenolol; amiodarone and amrinone; E-Vista® and Evista®; cisplatin and

carboplatin; Celebrex® and Cerebyx®; Dynacin® and DynaCirc®; Retrovir® and

Ritonavir®).1-5 Various organizations strive to prevent confusing new names from

reaching the marketplace. Proposed names are subjected to pre-approval screening by the

pharmaceutical manufacturers, the International Nonproprietary Name (INN) Committee

of the World Health Organization, the United States Adopted Names (USAN) Council,

the U. S. Pharmacopeia, Inc. (USP), the U. S. Patent and Trademark Office (USPTO),

and the U.S. Food and Drug Administration (FDA).6-11 Despite these efforts, new names

that are similar to existing names continue to be approved, and name-confusion errors

continue to occur.

Failures in the name review process occur in part because reviewing organizations

have different goals. For example, drug companies want trademarks that will facilitate

recognition and recall, distinguish products from the competition, and generate brand

loyalty.8 INN and USAN want nonproprietary names that are reasonably free from

confusing similarities while remaining useful to health professionals. USAN

accomplishes this by using a standard set of stems (e.g., -ac for anti-inflammatory agents

such as bromfenac,  -mab for monoclonal antibodies such as abciximab).12 The USP

wants established names that are consistent with existing compendial nomenclature.8 The

USPTO wants to prevent new trademarks from harming the commercial interests of firms
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holding existing marks.8, 13 The FDA wants to minimize threats to patient safety that may

result from use of a confusing name. Unlike USAN, INN, and USPTO reviews, FDA

reviews consider indication, dosage form, and dosing schedule (much of this information

is not even available when USAN designations are granted).8 Thus, name review

processes are motivated by multiple, competing goals, and decisions are based on

multiple, conflicting criteria.

Current pre-approval screening methods are also hindered by the lack of a

systematic procedure for integrating computerized searching and expert human review.

Drug manufacturers routinely conduct computerized screening of proposed names, but

regulatory agencies do not require results of these computer searches to be submitted as

part of the evaluation process.7, 8, 10, 11, 14, 15 Instead, expert panels rely on subjective

judgments about the acceptability of new names.8 Although naming agencies have

established guidelines for the acceptability of proposed names, these guidelines are vague

and subject to varying interpretation.7, 8, 16 The lack of objective criteria is compounded

by the enormity of the review task. With roughly half a million pharmaceutical

trademarks registered in the major industrialized countries alone, unaided experts could

never consider the full range of possibly conflicting names. As a result of these and other

deficiencies in the name review and approval process, confusing names continue to slip

through the cracks. Furthermore, society lacks any effective procedure for modifying the

drug name once it has been determined that nomenclature contributes significantly to

medication errors.

An improved system for evaluating the acceptability of new drug names would

integrate expert judgment and computerized name searching in a systematic and
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scientifically valid manner. Such a process would let computers do what they do best—

recall information from large databases quickly, precisely, and comprehensively. At the

same time, human experts would be empowered to do what they do best—make abstract

judgements about complex patterns and real-time practice factors (e.g., poor handwriting,

abbreviations, storage of drug products on shelves or crash carts, stress, fatigue,

distractions).

The envisioned review system would rely on validated, objective measures of

lexical (i.e., word-to-word) similarity. Many such measures exist already. In fact,

techniques for computerized searching of trademark databases are well-developed and

routinely used by trademark attorneys.14, 17-19 One problem with commercial search

algorithms is that they are kept as trade secrets. They have not been described in peer-

reviewed publications nor has their performance been adequately assessed. Fortunately,

the computer science literature describes standard methods for computing orthographic

(i.e., spelling) similarity between words.20-22 In addition, phonetic (i.e., sound-based)

methods continue to be developed as tools for searching databases of proper names.19, 23,

24 If these methods could be validated and systematically combined with evaluation by

human experts, then the probability of allowing a confusing new drug name to reach the

marketplace might be reduced.

Initial work on the development and evaluation of a computerized name searching

system has previously been published.25 In that case-control study, three different

measures were used to calculate orthographic (i.e., spelling) similarity scores for drug

pairs, and it was shown that orthographic similarity was a significant risk factor for errors

associated with name-confusion. A prognostic test based on orthographic similarity was



7

able to distinguish between cases and controls with 94% accuracy (when accuracy was

measured by resubstitution).

The goal of the present study was to identify and validate objective measures of

lexical similarity that could serve as the basis for a computerized drug name searching

system. The objective was to evaluate several measures of drug name confusion, alone

and in combination, with respect to their ability to distinguish between errors (i.e., pairs

of names reported to have been confused) and matched controls. This study expanded on

the previous work by evaluating additional measures of orthographic similarity, adding

phonetic (i.e., sound) similarity measurements to the model, assessing dose-response

relationships, building multivariate models, and using more sophisticated techniques (i.e.,

cross-validation) to assess predictive accuracy. We expected that cross-validation would

yield more conservative estimates of predictive accuracy than those made by

resubstitution. We also expected a multivariate model including orthographic and

phonetic measures would perform better than univariate, orthographic models.

METHODS

Design

The study used a case-control design to examine the relationship between

similarity and the probability of drug name confusion errors.

Data

In the following analyses, the pair of names was the unit of analysis. Cases (N =

1127 pairs) were drawn from published reports of look-alike/sound-alike medication

errors.2, 3, 26-28 The cases included those used in an earlier investigation, with 158 new

cases added from additional published sources.25 Controls were selected by a two-step
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process. First, all of the individual names among the cases were listed (a total of 2254

names). Duplicate names were deleted, leaving 1423 unique (i.e., non-repeated) names.

Names from this list were then randomly paired up to create 1127 controls. For example,

among the cases, Achromycin® was paired with Adriamycin®, and bupivacaine was paired

with Mapivacaine®. One of the control pairs generated at random was Achromycin® and

bupivacaine. The process of selecting control pairs was purely random except for the

following constraints. Repeated control pairs were not allowed, and no control pairs

included the same name (i.e., amoxicillin and amoxicillin). This method of selecting

controls minimized confounding by word length, word frequency and other possible

factors because both cases and controls were drawn from the same population of

individual names; only the pairings were different. A similar approach has been used in

the analysis of speech errors.29 (Note:  It would be unusual to select controls from among

the cases if the unit of analysis were the individual, but here the pair was the unit of

analysis. Similarity is a property of pairs, not individual names.) With this sample size,

and two-tailed alpha set to 0.05, t-tests had greater than 99% power to detect small

effects. Correlational analyses had greater than 90% power to detect small effects.30

Assuming a 1% exposure rate among controls, tests of association had greater than 90%

power to detect an odds-ratio greater than or equal to 3.31

Measures

Twenty-two different measures of lexical (i.e., word-to-word) similarity were

evaluated. These measures were grouped into three categories: orthographic similarity,

orthographic distance, and phonetic distance.

Orthographic Similarity



9

The term orthographic refers to the spelling of a word; phonetic refers to the

sound pattern of a word. The first category, orthographic similarity, was comprised

primarily of n-gram measures. (The names of various measures are printed in boldface

type to facilitate cross-reference between tables and text.) N-gram measures computed

similarity by breaking words down into n-letter subsequences and then counting the

subsequences that occurred in both words.20, 25 The bigram method used two-letter

subsequences; the trigram method used three-letter subsequences. For example, to

compute the similarity between Acthar® and Acular®, each word was broken down into

its two-letter subsequences. For Acthar® this yielded {ac, ct, th, ha, ar} and for Acular®

{ac, cu, ul, la, ar}. All n-grams were converted to lower case before comparisons were

made. The Dice coefficient was used to compute a similarity score between sets of

bigrams:32

Similarity = 2C/(B+A)

where A was the number of bigrams in the first word, B the number of bigrams in the

second word, and C the number of bigrams that occur in both words. Acthar® and

Acular® share two bigrams: {ac, ar}. Hence, the bigram similarity between Acthar® and

Acular® is 2*2/(5+5) = 0.4.

To increase sensitivity to the beginnings and endings of words, spaces were added

before and after each word in some methods. Thus, the bigram-1b1a method used two-

letter subsequences and added one space before and after each word. Eleven of the

twenty-two measures used some variant of the n-gram method. Also in this category was

a measure called longest common subsequence (LCS). The LCS between two character

strings is “a subsequence common to both having maximal length, i.e., it is at least as



10

long as any other common subsequence of the strings.”20 The length of the LCS was used

as the numerical similarity measure here. Thus, the LCS between Acthar® and Acular® is

“acar”, a sequence of length 4. Note that the letters in the common subsequence need not

be adjacent in the original sequences.20

Orthographic Distance

The second category, orthographic distance, was comprised of edit distance

measures (previously called Levenshtein distance).25 Edit distance refers to the number

of edits (i.e., insertions, deletions, or substitutions) required to transform one word into

another.20, 25 To transform Ambien® into Amen®, one must delete the b and the i, so the

edit distance between Ambien® and Amen® equals 2. In addition to raw edit distance,

this category also included a normalized edit distance, in which case raw edit distance

was divided by the maximum possible edit distance between two given words (i.e., the

length of the longer of the two words). Thus the normalized edit distance between

Ambien® and Amen® is 2/6=0.33.

Phonetic Distance

The third category, phonetic distance, included hybrid measures that combined

edit distance with various phonetic transcription methods. Phonetic transcription methods

transform the orthographic representation of a word into a representation that is designed

to capture regularities in the sound pattern of English. The phonetic transformation

methods included soundex, phonix, editex, tapered edit distance, omission key and

skeleton key.23, 33-35 Space limits prevent describing each of these measures in detail.

(Interested readers should consult the references given above or write the author for detailed
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descriptions.) A couple of examples illustrate the general approach. In the soundex system,

letters are recoded as numbers according to the scheme outlined in Figure 1.36

--------------------------
Figure 1 about here

--------------------------

The soundex system leaves the first letter alone, recodes all subsequent letters, and

deletes all 0 codes (i.e., vowels, h’s and w’s). Transformed strings are then truncated to a

length of 4 symbols. Thus, the soundex codes for clonidine and clonopin would be c4535

and c4515 respectively. Once a pair of words had undergone phonetic transformation, raw

edit distance was used to calculate the distance between them.23, 33 Editex is a variant on

soundex, using slightly different letter groups. The editex letter groups are given in

Figure 2.36 With editex, edit distance was computed as usual, but the cost of a letter

substitution depended on the letter groups. If two letters were the same, the cost was 0. If

two letters were in the same editex letter group, the cost was 1. Otherwise, the cost of an

insertion, deletion, or substitution was 2.

--------------------------
Figure 2 about here

--------------------------

A tapered edit distance, which computed the cost of each edit as a function of the

position in the string (with higher costs given to edits near the start of the string), was the

final measure in this category.23

Analysis Plan

Descriptive statistics were computed for all twenty-two measures. Differences in

mean similarity scores were examined by the t-test and the Mann-Whitney U test.

Correlations between the measures were examined. Next, we estimated the sensitivity,
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specificity, overall accuracy, best cutoff value, and odds ratio for each individual measure

using 10-fold cross-validation.37-39 On each fold of cross-validation, 90% of the data was

used as a training set. A locally optimal cutoff point was chosen by evaluating 100

different cutoff points evenly spaced across the range of the given measure and then

selecting the point that most accurately discriminated between cases and controls in the

training set. That cutoff point was then tested on the remaining 10% of the data. This

process was repeated 10 times. The ten test sets were non-overlapping.

One orthographic similarity measure, one orthographic distance measure, and one

phonetic distance measure were then selected for further analysis. For each of these

measures, we examined the relationship between similarity and the odds of confusion.

Similarity scores were broken into six exposure levels, and the odds ratio as a function of

exposure level was examined. The resulting relationships were tested for the presence of

a significant trend.31

In constructing a multivariate model, we pursued a two-part strategy. Part I was

based on the manual selection of a small set of individual variables. First, we built

separate single-predictor logistic regression models using the most accurate orthographic

similarity, orthographic distance, and phonetic similarity measures. We then formed a

multiple logistic regression model of confusion probability using these same three

measures as predictors.40 The predictive accuracy of the model was evaluated by 10-fold

cross-validation. On each fold of cross-validation, a logistic regression model was formed

using 90% of the cases and controls. Each model was then tested on the remaining 10%

of the data. The process was repeated 10 times using non-overlapping test data. Positive

and negative predictive value were plotted as a function of prior probability of error.38
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Part II of our multivariate modeling strategy began with data reduction. First we

performed principal components analysis on the covariance matrix of the 22 measures. A

small number of principal components were selected, and a multivariate model was

formed using the component scores as predictors. Accuracy was again evaluated by 10-

fold cross-validation. On each fold of the cross-validation, components were extracted,

and a logistic regression model was formed on the resulting component scores.

Results

Table 1 displays descriptive statistics for cases and controls for each of the

measures. Mean differences between cases and controls were large and statistically

reliable according to the t-test (p < .000). Concerns about the skewed distribution of

similarity scores (especially for cases) led us to examine differences with non-parametric

tests also. Differences remained significant in a Mann-Whitney U test and in a chi-square

goodness-of-fit test comparing ten-bin histograms (p < .000, details not shown). The 22

measures were highly interrelated. Correlations ranged in absolute value from 0.13 to

0.98, with most having an absolute value greater than 0.80. All correlations were

significant at the .0001 level.

-----------------------
Table 1 about here.
-----------------------

Table 2 shows means and 95% confidence intervals for sensitivity, specificity,

overall accuracy, cutoff values, and odds ratios for each of the individual measures tested.

-----------------------
Table 2 about here.
-----------------------
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Dose-response data are in Table 3. For this analysis, we selected the most

accurate measure of each type. (By ‘most accurate’, we mean those with the highest

sample means, ignoring for the moment that several measures had overlapping 95%

confidence intervals.) Trigram-2b was the most accurate orthographic similarity

measure. Normalized edit distance was the most accurate orthographic distance

measure, and editex was the most accurate phonetic distance measure (see Table 2). For

each measure, we divided the scores into 6 ranges, computed the odds and odds ratios,

and tested for the significance of a trend in odds ratios. The midpoint of each range was

used as a cutoff point in these analyses.31 As Table 3 indicates, there was an increasing

trend in the odds ratios for each measure. Compared to names with similarity scores at

the lowest levels (or greatest distances), pairs of names with the highest similarities

(shortest distances) were thousands of times more likely to be errors.

-----------------------
Table 3 about here.
-----------------------

Multivariate Model I

We formed three single-predictor logistic regression models of error probability

using trigram-2b, normalized edit distance, and editex respectively.40 Model

parameters are given in Table 4. Next, we formed a logistic regression model including

all three predictors. The estimated parameters to that model are in Table 5. Using

resubstitution, the model had 93.6% sensitivity, 96.1% specificity and 94.9% overall

accuracy. Table 6 shows the results of 10-fold cross-validation for the three-predictor

model. The model had cross-validated sensitivity of 93.7%, specificity of 95.9%, and

accuracy of 94.8%. Performance of this three-variable model was statistically equivalent
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to that of a univariate model based on trigram with two spaces before the word, but better

than all other univariate models. The positive and negative predictive values for this

model are given in Figure 3 for prior probabilities from 0-1. The relevant prior

probabilities for name confusion errors are almost certainly below 0.1.

---------------------------
Tables 4-6 about here.
---------------------------
---------------------------
Figure 3 about here.

---------------------------

Multivariate Model II

Two potential problems confronted Part I of the modeling strategy. First, the 95%

confidence intervals for the univariate measures overlapped, so it was not possible to

uniquely identify the most accurate measures. Second, the measures were highly

intercorrelated. We reasoned that data reduction by principal components analysis would

identify the main dimensions of variation in our measures. Scores on these dimensions

could then be used as predictors in another model. Principal components analysis yielded

two components that combined to account for 89.74% of the variance in similarity scores.

(The details of these analyses are not shown, but they are available from the author upon

request.) Based on the component coefficients, one component tapped similarity and the

other distance. A logistic regression model was formed using scores from these two

components as predictors. On the entire data set, the model had 93.70% sensitivity,

95.03% specificity, and 94.37% accuracy. By ten-fold cross-validation the model had

mean sensitivity of 93.48% (SD = .03), mean specificity of 94.96% (SD = .03), and mean

accuracy of 94.13% (95% CI: 93.51% to 94.74%). The differences between the
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multivariate model I, model II and the best univariate models were within the range of

sampling error.

Limitations

These results should be interpreted in light of the following limitations. First,

cases were drawn from voluntary reports, and their validity is compromised by

weaknesses inherent in voluntary reporting systems (e.g., selection biases, under-

reporting, reporting of near misses vs. actual errors).41 No concept of error frequency or

severity was included. Moreover, this paper ignored much of the complexity of oral

communication. When drug names are spoken, differences in regional dialects, personal

diction traits, job pressure, non-standard pronunciations, etc. can also influence error

rates associated with nomenclature. Beyond the name, this study ignored other drug

product characteristics that may contribute to confusion errors.42 That is, the measures

presented above predicted confusion between drug names. A drug product, however, is

more than just a name. To the extent that other characteristics (i.e., dose, dosage form,

etc.) contribute to drug confusion errors, the current measures are incomplete.

Discussion

Summary of Findings

Some pairs of drug names are more likely to be involved in errors than others.25

This analysis demonstrated that automated measures of orthographic and phonetic

similarity can be used to distinguish between known error pairs and controls drawn from

the same population of names. Specifically, we have shown (a) that errors and controls

are distributed differently with respect to measures of similarity and distance, (b) that

individual measures of similarity or distance can form the basis of sensitive and specific
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prognostic tests of error potential, (c) that the odds of being involved in a name-confusion

error increase as similarity increases (distance decreases), and (d) that a multivariate

model is no more accurate than the best univariate model.

Improvements on Prior Work

This investigation sought to build upon an earlier study.25 Previous research

examined only three measures of orthographic similarity.20, 21, 23 However, research in

psycholinguistics indicated that phonological (i.e., sound) similarity played a role in

lexical confusions in addition to that played by orthographic similarity.43-46 The present

study evaluated 22 distinct similarity measures, some orthographic, some phonetic. The

previous study assessed predictive accuracy by resubstitution, but resubstitution tends to

overestimate the accuracy of a model.37, 39, 47-49 The present study used 10-fold cross-

validation to reduce optimistic bias. Whereas the original study only examined univariate

models, the present investigation incorporated both univariate and multivariate models.

Finally, the earlier effort did not draw cases and controls from the same population of

names, and it provided no information about dose-response relationships. The present

investigation addressed both of these problems.

Error Prevention Strategy and Policy

This work suggests strategies for error prevention. For example, one could

provide a list of confusing name pairs to vendors of drug order-entry systems. These pairs

could be integrated into software warning systems so that when a potentially confusing

name is entered by a doctor, nurse, or pharmacist, a warning would appear cautioning the

professional to double-check that the correct drug was being identified.50 This approach

would seem to be most powerful for dealing with confusing drug names that are already
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on the market. A more efficient strategy would be to use the predictors described above

to screen proposed drug names against a standard database of existing drug names. (A

reference-standard database of names does not currently exist, but one could be

developed through cooperative efforts of the INN, USAN, USP, FDA, commercial

trademark search firms, and the drug industry.) The output of such a screening process

would feature a list of existing names, ranked in order of similarity to the proposed name.

One problem with the methods demonstrated here is that they may not be accurate

enough to serve as the sole basis for judgments about confusion potential. For example,

the multivariate model we tested had sensitivity of 93.7% and specificity of 95.9%. This

translates to a false negative rate of 6.3% and a false positive rate of 4.1%. Concretely,

when screening a new name against a database of existing names, our best model will

miss roughly 1 out of every 16 truly confusing names, and 1 out of every 24 names our

model identifies as confusing will prove not to be. These error rates may be acceptable

when computer screening is one part of a multi-step process that includes evaluation by

human experts, but they seem too high to justify using the computerized methods as the

sole basis for regulatory decisions. Moreover, the three-variable model had poor positive

predictive value at the relevant prior probabilities, meaning that additional screening of

names returned by our search methods would be required in order to maximize the

practical usefulness of the model’s predictions.

Efforts are underway to reduce these error rates, but research in information

retrieval confirms that there will always be a tradeoff between recall (sensitivity) and

precision (specificity).51 Consequently, we propose that USP, USAN, FDA, the USPTO

and other name-review bodies begin using objective measures, such as those developed
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above, to screen proposed drug names. The list of names retrieved by the initial screening

would be supplied as input to an expert review process that would judge error potential

by examining practice factors and drug product characteristics other than the

nomenclature. The European counterpart to the FDA, the EMEA, has already taken a step

in this direction by issuing a draft guidance paper on trademarks that requires new names

to differ from existing names by at least three letters.53 This overly simplistic criterion

would not receive our endorsement as it is currently expressed, but it does represent an

useful attempt to apply objective standards to the name approval process.

Conclusion

Similarity increases the risk of drug name confusion errors. Sensitive and specific

tests of confusion potential can be formed using objective measures of similarity.

Organizations that approve drug names should consider using such prognostic indicators

to screen proposed names against databases of existing names. Experts, who would make

the final determination about the acceptability of new drug names, could then review

potentially confusing names in light of other factors that may affect the ‘real world’

potential for confusion. The quality of the drug name approval process, and the look-

alike/sound-alike error rate, ought to improve as a result.
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Figure 1

Soundex letter groups

Soundex
Code

0 1 2 3 4 5 6

Letters aeiouyhw bpfv cgjkqsxz dt l mn r

Figure 2

Editex letter groups

Editex
Code

0 1 2 3 4 5 6 7 8 9

Letters aeiouy bp ckq dt lr mn gj fpv sxz csz
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Table 1

Descriptive statistics for similarity/distance measures

Cases (N = 1127) Controls (N = 1127) Overall (N = 2254)

Type Measure Meana Std. Dev. Range Meana Std. Dev. Range Mean Std. Dev. Range

Bigram 0.422 0.206 0-1 0.066 0.096 0-0.5 0.244 0.240 0-1
Bigram-1b 0.467 0.182 0-1 0.068 0.093 0-0.5 0.268 0.246 0-1
Bigram-1a 0.444 0.197 0-1 0.082 0.107 0-0.6 0.263 0.240 0-1
Bigram-1b1a 0.482 0.173 0-1 0.083 0.101 0-0.5 0.282 0.245 0-1
Trigram 0.265 0.228 0-1 0.009 0.042 0-0.4 0.137 0.208 0-1
Trigram-1b 0.306 0.216 0-1 0.010 0.043 0-0.4 0.158 0.215 0-1
Trigram-1a 0.287 0.224 0-1 0.018 0.057 0-0.5 0.152 0.212 0-1
Trigram-2b 0.366 0.199 0-1 0.018 0.053 0-0.46 0.192 0.227 0-1

Trigram-2a 0.325 0.218 0-1 0.038 0.080 0-0.6 0.181 0.218 0-1
Trigram-1b1a 0.320 0.207 0-1 0.018 0.053 0-0.4 0.169 0.214 0-1
Trigram-1b2a 0.350 0.198 0-1 0.036 0.073 0-0.5 0.193 0.217 0-1
Trigram-2b1a 0.371 0.188 0-1 0.023 0.058 0-0.42 0.197 0.223 0-1
Trigram-2b2a 0.393 0.179 0-1 0.039 0.073 0-0.43 0.216 0.224 0-1

Orthographic
Similarity

LCS 5.444 2.279 0-20 2.201 1.133 0-7 3.823 2.471 0-20

Edit Distance 4.075 1.960 0-19 8.788 2.983 2-27 6.432 3.453 0-27Orthographic
Distance NED 0.446 0.158 0-1 0.837 0.112 0.4-1.0 0.641 0.239 0-1

Editex 10.807 5.406 0-55 23.673 8.242 4-76 17.240 9.485 0-76
TED 104.197 90.009 0-1367 243.533 162.046 34-1527 173.865 148.420 0-1527
Edit-Soundex 1.810 1.086 0-8 4.295 1.363 1-11 3.053 1.750 0-11
Edit-Phonix 1.784 1.149 0-9 4.512 1.526 1-13 3.148 1.920 0-13
Edit-Omission 3.098 1.399 0-8 5.992 1.592 2-12 4.545 2.060 0-12

Phonetic Distance

Edit-Skeleton 3.276 1.478 0-11 6.582 1.590 2-14 4.929 2.256 0-14

Note: LCS = Longest common subsequence. NED = Normalized edit distance. TED = Tapered edit distance.
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Trigram-2b = trigram with two spaces added before the word, Trigram-1a = trigram with one space added after the word, etc.
a For every measure, mean similarity/distance scores differed significantly between cases and controls (T-tests, p < .0001).
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 Table 2
Average performance of similarity and distance measures in case-control analyses of name-confusion errors (N = 1127 cases, N =
1127 controls) based on 10-fold cross-validation.

Measure Accuracy 95% CI Sensitivity 95% CI Specificity 95% CI Cutoff 95% CI Odds
Ratio

95% CI

Trigram2b 0.929 (0.916, 0.941) 0.920 (0.903, 0.937) 0.937 (0.918, 0.957) 0.116 (0.113, 0.119) 364.994 (12.735, 717.253)
Trigram2b1a 0.924 (0.911, 0.936) 0.936 (0.919, 0.952) 0.912 (0.892, 0.931) 0.110 (0.110, 0.110) 210.141 (118.140, 302.141)
NED 0.917 (0.897, 0.937) 0.901 (0.867, 0.935) 0.933 (0.910, 0.956) 0.659 (0.652, 0.666) 266.452 (82.427, 450.478)
Bigram1b 0.916 (0.904, 0.927) 0.886 (0.875, 0.896) 0.946 (0.926, 0.965) 0.246 (0.243, 0.249) 183.527 (115.520, 251.535)
Bigram1b1a 0.909 (0.894, 0.923) 0.905 (0.887, 0.924) 0.913 (0.888, 0.937) 0.245 (0.237, 0.253) 126.294 (91.815, 160.773)
Trigram2b2a 0.901 (0.883, 0.919) 0.885 (0.859, 0.911) 0.917 (0.894, 0.940) 0.168 (0.152, 0.184) 130.067 (63.210, 196.923)
Trigram1b1a 0.889 (0.871, 0.906) 0.860 (0.836, 0.883) 0.918 (0.898, 0.937) 0.110 (0.110, 0.110) 89.840 (55.448, 124.232)
Trigram1b2a 0.884 (0.864, 0.905) 0.903 (0.881, 0.924) 0.866 (0.842, 0.890) 0.110 (0.110, 0.110) 79.951 (46.294, 113.609)
Trigram1b 0.883 (0.866, 0.901) 0.805 (0.777, 0.834) 0.962 (0.948, 0.975) 0.116 (0.110, 0.122) 195.798 (71.728, 319.868)
Bigram1a 0.882 (0.863, 0.901) 0.857 (0.830, 0.884) 0.907 (0.885, 0.929) 0.240 (0.240, 0.240) 78.189 (48.728, 107.651)
Edit-
Distance

0.882 (0.861, 0.902) 0.822 (0.790, 0.855) 0.941 (0.925, 0.957) 5.123 (5.109, 5.137) 98.397 (59.876, 136.917)

Editex 0.881 (0.861, 0.901) 0.839 (0.808, 0.871) 0.923 (0.904, 0.942) 15.002 (14.755, 15.249) 96.382 (37.314, 155.450)
Bigram 0.874 (0.856, 0.892) 0.813 (0.779, 0.847) 0.935 (0.921, 0.949) 4.062 (4.058, 4.066) 83.325 (44.497, 122.154)
Edit-
Omission

0.866 (0.851, 0.882) 0.870 (0.841, 0.898) 0.863 (0.831, 0.894) 0.177 (0.160, 0.194) 50.827 (38.399, 63.254)

Edit-Phonix 0.862 (0.848, 0.876) 0.933 (0.923, 0.943) 0.791 (0.772, 0.811) 3.116 (3.108, 3.124) 59.184 (43.781, 74.587)
Edit-
Soundex

0.859 (0.835, 0.883) 0.774 (0.733, 0.815) 0.945 (0.935, 0.954) 2.090 (2.090, 2.090) 75.305 (47.537, 103.074)

Edit-
Skeleton

0.850 (0.835, 0.864) 0.850 (0.822, 0.878) 0.849 (0.831, 0.868) 4.080 (4.080, 4.080) 35.968 (28.112, 43.823)

Trigram2a 0.848 (0.829, 0.867) 0.840 (0.808, 0.873) 0.855 (0.835, 0.876) 0.116 (0.113, 0.119) 37.661 (26.012, 49.310)
Trigram1a 0.844 (0.828, 0.860) 0.773 (0.747, 0.800) 0.914 (0.894, 0.935) 0.115 (0.112, 0.118) 44.509 (31.753, 57.265)
LCS 0.837 (0.816, 0.859) 0.846 (0.827, 0.866) 0.829 (0.802, 0.855) 3.006 (2.994, 3.018) 31.153 (21.169, 41.138)
Trigram 0.836 (0.823, 0.850) 0.727 (0.707, 0.747) 0.946 (0.932, 0.959) 0.070 (0.050, 0.090) 59.919 (36.585, 83.252)
TED 0.812 (0.787, 0.836) 0.803 (0.777, 0.828) 0.821 (0.791, 0.851) 137.855 (137.022,

138.688)
22.275 (14.647, 29.902)
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Table 2 (cont’d.)

Average performance of similarity and distance measures in case-control analyses of name-confusion errors (N = 1127 cases, N =

1127 controls) based on 10-fold cross-validation.

Note. On each fold of cross-validation, a locally optimal cutoff point was chosen by evaluating 100 different cutoff points evenly

spaced across the range of the given measure and picking the one that performed best in resubstitution accuracy. Ninety percent of the

N = 2254 pairs of cases and controls were used to select the cutoff point for each fold. Each cutoff point was then tested on the

remaining 10% of the data. This process was repeated 10 times. The table reports mean results from ten trials. The ten test sets were

non-overlapping. Cutoff point is the mean of the 10 locally optimal cutoff points. Odds ratio is the mean of the odds ratios at ten

locally optimal cutoff points. Trigram-2b = trigram with two spaces added before the word, Trigram-1a = trigram with one space

added after the word, etc. NED = normalized edit distance. Measures are sorted in decreasing order of accuracy.
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Table 3

Relation of similarity/distance to odds ratio of error for selected univariate measures

Measure Similarity
or

Distance

Errors Controls Odds Odds
Ratio

0 60 983 0.061 1.000

0-0.1 9 46 0.196 3.213

0.1-0.2 196 79 2.481 40.672

0.2-0.3 181 14 12.929 211.951

0.3-0.4 227 2 113.500 1860.656

>0.4 454 3 151.333 2480.869

Trigram-2b

Chi-square for trend = 1522.84, p < 0.000

0.9-1.0 5 277 0.018 1.000

0.8-0.9 15 429 0.035 1.944

0.7-0.8 51 283 0.180 10.000

0.6-0.7 86 94 0.915 50.833

0.5-0.6 158 32 4.938 274.333

≤0.5 812 12 67.667 3759.278

Normalized
Edit

Distance

Chi-square for trend = 1579.74, p < 0.000

>50 1 19 0.053 1.000

40-50 2 45 0.044 0.830

30-40 9 80 0.113 2.123

20-30 38 560 0.068 1.280

10-20 458 419 1.093 20.624

0-10 619 4 154.750 2919.811

Editex
(Distance)

Chi-square for trend = 970.09, p < 0.000

Note: Results displayed in increasing order of similarity, decreasing order of distance.
Normalized edit distance and editex are distance measures;  odds increase as distance
decreases. Trigram-2b = trigram with two spaces added before the word.
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Table 4

Single-predictor logistic regression models for predicting probability of name-confusion

errors

Variable Beta SE(B) Wald X2 -2 Log
Likelihood

P>X2 OR 95% CI for OR

22.7319 1.0159 500.7169 1000.864 .0001 7.45 X 109 (1.50 X 108, 3.69 X 1011)Trigram-2b

9.71b (7.956, 11.847)

-17.3343 0.7407 547.7006 969.419 .0001 2.96 X 10-8 (1.27 X 10-7, 6.97 X 10-9)NED

0.177a (0.153, 0.204)

-0.3734 0.0150 618.9278 1474.477 .0001 0.688 (0.668, 0.709)Editex

0.059c (0.047, 0.073)

Note: NED = Normalized edit distance.

aIndicates odds ratio for changes in NED of 0.1 units.

bIndicates odds ratio for changes in trigram-2b  of 0.1 units.

cIndicates odds ratio for changes in editex of 7.6 units (1/10th of the editex range).
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Table 5

Three-variable logistic regression model for predicting probability of name-confusion

errors

Variable Beta SE(B) Wald X2 P>X2 OR 95% CI for OR

14.5019 1.1446 160.5381 .0000 1.98  X 106 (1.16 X 105, 3.38 X 107)Trigram-2b

4.263b (3.407, 5.336)b

NED -6.1107 0.9714 39.5702 .0001 0.002 (0.000, 0.015)

0.543a (0.449, 0.657)a

Editex -.1698 0.0221 59.2658 .0000 0.844 (0.808, 0.881)

0.275c (0.198, 0.383)c

Constant 5.2786 0.6051 76.1097 .0000 - -

-2 log likelihood = 674.378, X2(3) = 2450.330, p < .0001

Note. NED = Normalized edit distance. Trigram-2b = trigram with two spaces added

before each word. aIndicates odds ratio and confidence interval for changes in NED of

0.1 units. bIndicates odds ratio and confidence interval for changes in trigram-2b of 0.1

units. cIndicates odds ratio for changes in editex of 7.6 units (1/10th of the editex range).
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Figure 3. Predictive value of three-variable logistic regression model.
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